
Advanced Verification Methodology
Cookbook

Version 2.0

Mark Glasser, Editor
Adam Rose

Tom Fitzpatrick
Dave Rich

Harry Foster

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License
for the specific language governing permissions and limitations under the License.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

Contractor/manufacturer is:
Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000

Toll-Free Telephone: 800.592.2210
Website: www.mentor.com

SupportNet: www.mentor.com/supportnet
Contact Your Technical Writer: www.mentor.com/supportnet/documentation/reply_form.cfm

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/terms_conditions/trademarks.cfm.

http://www.apache.org/licenses/LICENSE-2.0
http://www.mentor.com
http://www.mentor.com/supportnet
http://www.mentor.com/supportnet/documentation/reply_form.cfm
http://www.mentor.com/terms_conditions/trademarks.cfm

Advanced Verification Methodology Cookbook, 2.0 1
July 24, 2006

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner
that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control,
are controlled by, or are under common control with that entity. For the purposes of this
definition, "control" means (i) the power, direct or indirect, to cause the direction or
management of such entity, whether by contract or otherwise, or (ii) ownership of fifty
percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such
entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including but
not limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions, annotations,
elaborations, or other modifications represent, as a whole, an original work of
authorship. For the purposes of this License, Derivative Works shall not include works
that remain separable from, or merely link (or bind by name) to the interfaces of, the
Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the
Work and any modifications or additions to that Work or Derivative Works thereof, that
is intentionally submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of the copyright
owner. For the purposes of this definition, "submitted" means any form of electronic,
verbal, or written communication sent to the Licensor or its representatives, including
but not limited to communication on electronic mailing lists, source code control
systems, and issue tracking systems that are managed by, or on behalf of, the Licensor

Advanced Verification Methodology Cookbook, 2.02
July 24, 2006

for the purpose of discussing and improving the Work, but excluding communication
that is conspicuously marked or otherwise designated in writing by the copyright owner
as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently incorporated
within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license
applies only to those patent claims licensable by such Contributor that are necessarily
infringed by their Contribution(s) alone or by combination of their Contribution(s) with
the Work to which such Contribution(s) was submitted. If You institute patent litigation
against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the
Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that
Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or Object
form, provided that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of this
License; and

b. You must cause any modified files to carry prominent notices stating that You
changed the files; and

c. You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the
Work, excluding those notices that do not pertain to any part of the Derivative
Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the attribution
notices contained within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one of the following places:
within a NOTICE text file distributed as part of the Derivative Works; within the
Source form or documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and wherever such third-party

Advanced Verification Methodology Cookbook, 2.0 3
July 24, 2006

notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License.

You may add Your own attribution notices within Derivative Works that You distribute,
alongside or as an addendum to the NOTICE text from the Work, provided that such
additional attribution notices cannot be construed as modifying the License. You may
add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your
modifications, or for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under
the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any
separate license agreement you may have executed with Licensor regarding such
Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for reasonable and
customary use in describing the origin of the Work and reproducing the content of the
NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any risks associated
with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You
for damages, including any direct, indirect, special, incidental, or consequential
damages of any character arising as a result of this License or out of the use or inability
to use the Work (including but not limited to damages for loss of goodwill, work
stoppage, computer failure or malfunction, or any and all other commercial damages or
losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of
support, warranty, indemnity, or other liability obligations and/or rights consistent with
this License. However, in accepting such obligations, You may act only on Your own
behalf and on Your sole responsibility, not on behalf of any other Contributor, and only
if You agree to indemnify, defend, and hold each Contributor harmless for any liability

Advanced Verification Methodology Cookbook, 2.04
July 24, 2006

incurred by, or claims asserted against, such Contributor by reason of your accepting
any such warranty or additional liability.

END OF TERMS AND CONDITIONS

Acknowledgements

Advanced Verification Methodology Cookbook, 2.0 5
July 24, 2006

Acknowledgements
The authors gratefully acknowledge many others who contributed material, ideas, and labor to
the production of this book.

• The rest of the verification technology team at Mentor Graphics who reviewed the text
and examples, and discussed ideas:

Jan Johnson, manager

Rich Edelman

Duaine Pryor

• The Technical Publications team at Mentor Graphics who edited the text and produced
the finished copy:

Charley Rowley, manager

Todd Burkholder

Donna Dale

Chris Shaw

• Our partners at Denali who provided feedback on requirements and helped us bounce
ideas around:

Joe Bauer

Sean Smith

• Our partners at XtremeEDA who reviewed material and continually challenged us:

David Jones

Paul Marriott

• The DVT Technical Marketing Team at Mentor who reviewed material and asked many
insightful questions:

Joe Rodriguez, manager

Raghu Ardeishar

Gabriel Chidolue

Allan Crone

Keith Gover

Chuck Seeley

• Reviewers who provided valuable feedback

Ray Salemi

Waturu Yamamoto

Thanks to everyone who supported and encouraged this work.

Advanced Verification Methodology Cookbook, 2.06

Acknowledgements

July 24, 2006

Advanced Verification Methodology Cookbook, 2.0 7
July 24, 2006

Table of Contents

Acknowledgements . 5

Chapter 1
Cookbook Orientation . 13

Preface. 13
Introduction . 15
Using the Cookbook . 17

Cookbook Organization . 17
Forms . 18
Building and Running the Examples . 18
Example Code . 18
Obtaining the Cookbook Kit . 19
Questions and Comments. 19

Cookbook Notation . 21
Components . 21
Interfaces . 22
Interconnect . 23
Channels . 23
Summary . 24

Naming Conventions. 25

Chapter 2
Verification Principles . 29

Two Questions . 29
Testbenches . 33
A First Testbench . 37
A Second Testbench . 45

Chapter 3
Overview of the AVM . 51

Verification Components . 51
Concentric Testbench Architecture . 51
Transactors . 53
Environment Components . 54
Analysis Components. 54
Controller . 55

Two Domains . 55
Object Oriented Programming Style . 56

Objects as Components . 56
Inheritance . 59
Interfaces . 60

Summary . 62

Advanced Verification Methodology Cookbook, 2.08
July 24, 2006

Chapter 4
Introduction to TLM . 63

Definition of a Transaction . 64
Representing Transactions . 64

Transaction Level Modeling and Verification . 69
Abstraction. 69
Reference Models . 70

Put . 71
Description. 71
Key Concepts . 71
SystemVerilog Implementation . 73
SystemC Implementation. 75

Get. 77
Description. 77
Key Concepts . 77
SystemVerilog Implementation . 79
SystemC Implementation. 81

Request/Response . 83
Description. 83
Key Concepts . 83
SystemVerilog Implementation . 85
SystemC Implementation. 87

FIFO . 89
Description. 89
Key Concepts . 89
SystemVerilog Implementation . 91
SystemC Implementation. 93

Bi-directional Communication . 95
Description. 95
Key Concepts . 95
SystemVerilog Implementation . 97
SystemC Implementation. 101

Transaction Level Bus . 103
Description. 103
Key Concepts . 103
SystemC Implementation. 105

Chapter 5
AVM Mechanics in SystemVerilog . 113

Interfaces. 113
SystemVerilog Interface . 113
SystemVerilog Virtual Interface . 114
Pure Virtual Interface Class . 115

Ports and Exports . 115
Ports . 115
Exports . 116

The Environment Class. 116
The Connect Phase . 118

Advanced Verification Methodology Cookbook, 2.0 9
July 24, 2006

Non-Hierarchical Binding . 118
Ports, Exports and Hierarchy . 120
Connecting Analysis Ports . 123
Virtual Interfaces and the avm_env . 128

Summary . 130

Chapter 6
Testbench Fundamentals. 131

Testbench for a Memory . 133
Description . 133
Key Concepts . 133
Monitor Construction . 133
SystemVerilog Implementation Details . 135
SystemC Implementation Details. 137

Testbench for Memory with Separate Driver . 139
Description . 139
Key Concepts . 139
Transaction Level Stimulus Generator. 139
Driver Construction . 140
SystemVerilog Implementation Details . 141
SystemC Implementation Details. 143

Memory TB with Independent Driver and Stimulus Generator . 145
Description . 145
Key Concepts . 145
Driver Design . 145
SystemVerilog Implementation Details . 147
SystemC Implementation Details. 149

Bi-directional Communication in Testbench . 151
Description . 151
Key Concepts . 151
SystemVerilog Implementation Details . 153
SystemC Implementation Details. 157

Chapter 7
Complete Testbenches . 161

Scoreboard. 163
Description . 163
Key Concepts . 163
Analysis ports. 164
Scoreboards . 164
SystemVerilog Class-Based Implementation Details . 167
SystemVerilog Module-Based Implementation Details. 169
SystemC Implementation Details. 171

Coverage . 175
Description . 175
Key Concepts . 175
Coverage and Coverage Collectors . 176
SystemVerilog Implementation Details . 177

Advanced Verification Methodology Cookbook, 2.010
July 24, 2006

SystemVerilog Module-Based Implementation Details . 179
SystemC Implementation Details . 181

Generating Errors . 183
Description. 183
Key Concepts . 183
Constructing an Error Driver . 184
SystemVerilog Class-Based Implementation Details . 187
SystemVerilog Module-Based Implementation Details . 189
SystemC Implementation Details . 191

Chapter 8
Stepwise Refinement . 193

Transaction Level FPU . 195
Description. 195
Key Concepts . 195
SystemVerilog Implementation Details. 197
SystemC Implementation Details . 199

FPU RTL. 201
Description. 201
Key Concepts . 203
SystemVerilog Implementation Details. 205
SystemC Implementation Details . 209

FPU Golden Model . 213
Description. 213
Key Concepts . 214
SystemVerilog Implementation Details. 215
SystemC Implementation Details . 217

Chapter 9
Constrained Random Verification . 219

Overview of CRV Methodology. 219
Directed Testing. 219
Constrained Random Verification . 220
Directing Tests from Constrained Random . 220
Basics of the Technology. 221

Randomization with Object Oriented Programming . 225
Object Oriented Programming Basics . 225
Adding Randomization to Objects. 226
Layering Constraints Using Inheritance . 227

Managing Constraints . 228
Dynamically Modifying Constraints . 228
Over Constraining . 229
Implication . 230
Distributions and Solving Order . 230

Useful Operations in Constraints . 231
Set Membership . 231
Dynamically Sized Arrays . 232
Organization of Constraints . 233

Advanced Verification Methodology Cookbook, 2.0 11
July 24, 2006

Advanced Topics. 234
Class Factories . 234
Example of State Dependent Constraints. 236

Chapter 10
Assertion-Based Monitors . 239

Assertion-Based Monitor . 241
Description . 241
Key Concepts . 242
Protocol Assertion-Based Monitor Example . 243
SystemVerilog Implementation Details . 247

Testbench with Assertion-Based Checker . 251
Description . 251
Key Concepts . 251
SystemVerilog Implementation Details . 253

Appendix A
The SystemVerilog AVM Library . 257

Introduction . 257
Reporting. 257

Basic Reporting Methods. 257
Verbosity Level . 257
Actions . 258
File Output . 259
The Report Formatter . 259

Building Blocks. 260
avm_named_component . 260
avm_verification_component. 264
avm_env . 265

Core AVM Classes and Components . 266
avm_transaction . 266
avm_stimulus . 267
analysis_if and analysis_port . 268
avm_in_order_comparator . 270
avm_subscriber . 271

The TLM Library . 272
The TLM Interfaces . 272
TLM Channels . 273

Additional AVM Components . 275
avm_algorithmic_comparator . 275
avm_global_analysis_ports . 277

Use Model Issues . 277
Uses of Fine Grained Process Control . 277
Transactions, Convenience Methods, and Directed Testing . 280
Reproducible Random Stimulus . 281

Coding Techniques . 281
Wrappers and Multiple Inheritance . 282
Policy Classes. 284

Advanced Verification Methodology Cookbook, 2.012
July 24, 2006

Appendix B
Bibliography . 287

Cookbook Orientation
Preface

Advanced Verification Methodology Cookbook, 2.0 13
July 24, 2006

Chapter 1
Cookbook Orientation

Preface
When I need to learn a new piece of software, I invent a problem for myself that is within the
domain of the application, and then set out to solve it using the new tool. In the course of
solving the problem I learn how to use the tool, and I also gain a practical perspective on which
features of the tool are useful and which are not. An easy way to start is to copy something that
someone else has done and modify it. Years ago, when I first learned to program in C, I started
out copying “Hello World” to see what it would do. Sure enough, when I compiled and ran it,
the string

hello world

flickered on my green CRT screen. That trivial program enabled me to understand what a basic
C program looked like and how to use Unix utilities such as cc and ld. The next step was to use
variables and read from the command line with scanf. From there I graduated to loops,
functions, and pretty soon I could write real programs in C. Each time I tried something new I
would build a simple program to compile and run.

The premise of this book is that most engineers take a similar approach to new technology.
They want to try it out and see how it feels, learn the boundaries of what kinds of problems it
addresses, and develop some practical experience. This is why quickstart guides and online help
systems are popular. Generally, engineers do not want to read a lengthy manual and study the
theory of operation first. They would rather plunge in, and later refer to the manual when they
get stuck. In the mean time, they develop a general understanding of what the technology is and
how to perform basic operations. The details presented in the manual then become much more
meaningful in the context of a basic understanding of what the technology is all about.

Think of this book as a getting started guide to functional verification, and to testbench
construction, in particular. Building testbenches to functionally verify a digital design is a hard
problem. Where to start? Many books on the topic lead their readers through the theoretical
issues involved in software construction and development of verification components. This kind
of reading is very valuable and we encourage readers of this text to delve into some of them. A
bibliography is provided as an appendix. We also know that engineers want to see what a
complete testbench looks like, how to construct a “well defined” interface, and get an
understanding of random number streams without having to spend a week building a model
first.

This book takes a practical approach to learning about testbench construction. We provide a
series of examples, each of which solves a particular verification problem. The examples are

Advanced Verification Methodology Cookbook, 2.014

Cookbook Orientation
Preface

July 24, 2006

thoroughly documented and complete, delivered with build and run scripts, allowing them to be
executed in a simulator and their behavior observed. The examples are generally small and
focused so that the reader doesn’t have to wade through a lot of ancillary material to get to the
heart of an example.

All of the examples are built using the Mentor Graphics Advanced Verification Methodology
(AVM). This is a proven methodology for constructing complex testbenches using a
combination of solid software construction practices and transaction level modeling techniques.

We call this book the Verification Cookbook because we have modeled its organization after a
cookbook. Each example is a recipe. It contains working code that applies the AVM to a
specific problem. The recipes are grouped in sections, beginning with simple sauces and
moving on to complete meals.

The examples provided can be used in a number of ways. The examples are presented in a linear
progression — from the most basic testbench, with just a pin level stimulus generator, monitor,
and DUT, to fairly sophisticated usage that involves stacked protocols, coverage, and automated
testbench control. Each example in the progression introduces new concepts and shows you
how to implement those concepts in a straightforward manner. We recommend you start by
examining the first example. When you feel comfortable with it, move on to the second one.
Continue in this manner, mastering each example and moving to the next.

The examples in the cookbook are there for you to explore. After you run the examples, study
the code to really understand the construction of the examples. The code documentation
provided with each example serves as a guidepost to point you to the salient features. Use this as
a starting point to study the coding organization, style, and other implementation details not
explicitly discussed. You will find the modular design makes it easy to understand each module
and to follow the overall design and flow.

Play with the examples, too. Change the total time of simulation to see more results, modify the
stimulus, add or remove components, and so on. Each new thing you try will help you to more
fully understand the examples and how they operate.

Feel free to use any of the example code as templates for your work1. Cut and paste pieces that
you find useful into your code, or use them as a way to get started developing your own
verification infrastructures. Mainly, enjoy.

1. The Verification Cookbook is delivered under an open source license. See LICENSE.txt in the cookbook
kit or refer to http://opensource.org/licenses/apache2.0.php for full text of the Apache-2.0 license.

Cookbook Orientation
Introduction

Advanced Verification Methodology Cookbook, 2.0 15
July 24, 2006

Cookbook Orientation

Introduction
Software construction is not usually a topic that comes up when hardware designers and
verification engineers think about their work. Designers and verification engineers, particularly
those schooled in electronic engineering, naturally think of design and verification work as a
“hardware problem,” meaning that principles of hardware design are required to build and
verify systems. Of course, they are largely correct. Electronic design requires an in-depth
knowledge of hardware: everything from basic DC and AC circuit analysis and transistor
operation, to communication protocols and computer architecture. A smattering of physics is
useful, too, for designs implemented in silicon (which most are these days). However, building
a testbench to verify a hardware design is a different kind of problem.

Today, with the availability of reliable synthesizers and usage of synchronous design
techniques, the lowest level of detail that designers must consider is RTL (Register Transfer
Level). As the name suggests, the primary elements of a design represented at the RTL level are
the registers, interconnect between registers, and the computation necessary to modify their
values. Since each register receives new values only when the clock pulses, all of the
combinational logic needed to compute the register value can be abstracted to a set of boolean
and algebraic expressions.

RTL straddles the hardware and software worlds. The components of an RTL design are readily
identifiable as hardware, such as register, wires, clocks. Yet, the combinational expressions and
control logic look suspiciously like those in typical procedural programming languages such as
C. The process of building an RTL design is much like programming. For example, you use
compilers, linkers, and debuggers just as you would if you were programming in C. There are
differences, of course. Issues surrounding timing, concurrency, and synchronization need not be
considered when programming in C (unless you are writing embedded software, which further
blurs the line between hardware and software).

Testbenches live squarely in the software world. The elements of a testbench are exactly the
same as those found in any software system — data structures and algorithms. Testbenches are
hardware aware since their job is to control, respond to, and analyze hardware. Still, the bulk of
their construction and operation falls under the software umbrella. There are several reasons
why this is the case:

• Testbenches operate at levels of abstraction higher than RTL.

• The generation of stimuli and collection and analysis of results do not involve any
timing, register, wires, or other hardware elements.

• Testbenches do not need to be synthesized and thus are free from restrictions implied by
the requirement that a design needs to be synthesized1.

1. In some flows it is necessary to synthesize all or part of a testbench in order to run it on a hardware
emulator.

Advanced Verification Methodology Cookbook, 2.016

Cookbook Orientation
Introduction

July 24, 2006

Software construction is at the center of modern verification technology and methodology.
Verification is a software problem. The underpinnings of the Advanced Verification
Methodology is the application of software construction techniques to hardware verification
problems. Software construction is itself a very large topic on which many volumes have been
written. It’s not possible for us to go into great depth on topics such as object oriented
programming, library organization, code refactoring, testing strategies, and so on. However, we
will touch on these topics in a practical way, showing how to apply software techniques to
building testbenches. We rely heavily on examples to illustrate the principles discussed.

Cookbook Orientation
Using the Cookbook

Advanced Verification Methodology Cookbook, 2.0 17
July 24, 2006

Cookbook Orientation

Using the Cookbook
The cookbook is in two parts: a document and a tree of examples. In this section, we show you
how to navigate around the cookbook tree and how to build and run the examples.

Cookbook Organization
The cookbook kit contains two primary directories: topics and utilities. Topics contains the
examples and utilities contains the AVM libraries for both SystemC and SystemVerilog.

Topics is the root of the tree containing all the examples provided in the cookbook. The
directory names are prefixed with a number that represents the chapter in the cookbook in which
the topic is discussed. Not every chapter in the cookbook has corresponding code examples.

The utility library has two parts, one for SystemC and one for SystemVerilog. There are no
“runnable” examples in the utility tree. The utilities library contain the base classes and utility
functions that implement the AVM in SystemVerilog and in SystemC. The utilities are
referenced in most of the examples under the topics directory tree. The SystemVerilog utility
library is explained fully in Appendix A

cookbook-2.0

topics utilities

topics

06
testbench

fundamentals

07
complete

testbenches

08
stepwise

refinement

09
randomization

04
tlm

10
assertions

utilities

systemc systemverilog

avmavm_util avm_hybrid_utilavm

Advanced Verification Methodology Cookbook, 2.018

Cookbook Orientation
Using the Cookbook

July 24, 2006

Forms
The cookbook examples come in several different forms. The form loosely relates to the
language used for the example, and each form has a unique ID label. The forms are:

• sc - SystemC

• svc - SystemVerilog class-based

• svm - SystemVerilog module-based

• vhdl - VHDL

The form names are used to disambiguate script names and directory names in places where the
same example is provided in multiple forms.

Building and Running the Examples
Installing the cookbook kit is a matter of unpacking the kit in a convenient location. No
additional installation scripts or processes are required.

Each example directory contains an “all” script and a “compile” script. The “all” script runs the
example in its entirety and is named all_<form_id>.do (e.g., all_svc.do). The compile script is a
file supplied as an argument to the -f option on the compiler command line. Each example is
supplied with a vsim.do file that contains the simulator commands needed to run each example.

The simplest way to run an example is to execute its “all” script:

% ./all_svc.do

This compiles, links, and runs the example. You can also run the steps manually:

% vlib work
% vlog -f compile_svc.f
% vsim -c top -do vsim.do

SystemC examples require an additional link step. The individual steps to run a SystemC
example are:

% vlib work
% sccom -f compile_sc.f
% sccom -g -scv -link
% vsim -c top -do vsim.do

Example Code
Most of the code used as illustrations in this text is derived directly from the code in the
examples and the utility library. In places where that’s the case you’ll see line numbers

Cookbook Orientation
Using the Cookbook

Advanced Verification Methodology Cookbook, 2.0 19
July 24, 2006

associated with the code, and in many cases a file name either at the top of bottom of the code
inset. The file name identifies the specific file in the example tree that contains the code shown
in the text. The line numbers are relative to the file. Here’s a sample code inset:

44 class producer : public sc_module
45 {
46 public:
47 producer(sc_module_name nm) :
48 sc_module(nm),
49 put_port(“put_port”)
50 {
51 SC_THREAD(run);
52 }
53 SC_HAS_PROCESS(producer);
54
55 sc_export<put_if> put_port;
56
57 void run()
58 {
59 int randval;
60
61 for(int i=0; i<10; i++)
62 {
63 randval = rand() % 100;
64 cout << “producer: putting “ << randval << endl;
65 put_port->put(randval);
66 }
67 }
68 };
file: topics/04_tlm/01_put_sc/put.cc

The file name at the bottom tells you where to find the file which this code came from in the
example tree, in this case topics/04_tlm/01_put_sc/put.cc. The line numbers are relative
to that file.

Obtaining the Cookbook Kit
The AVM Verification Cookbook is a living document that can be found in its entirety on the
Mentor Graphics website at http://www.mentor.com/products/fv/_3b715c. Both the Cookbook
and the set of examples are updated regularly. Please check there for updates.

Questions and Comments
We’d very much like to hear from you. Please tell us how you are using the cookbook, and feel
free to offer ideas and suggestions for future editions. We’ll also answer questions about the
material. You can email questions or comments to:

cookbook_register@mentor.com

Advanced Verification Methodology Cookbook, 2.020

Cookbook Orientation
Using the Cookbook

July 24, 2006

Cookbook Orientation
Cookbook Notation

Advanced Verification Methodology Cookbook, 2.0 21
July 24, 2006

Cookbook Orientation

Cookbook Notation
Throughout the cookbook we illustrate examples with diagrams that show verification
components and their interconnections. We use a schematic-like notation for these diagrams
that combines both data flow and control flow concepts.

Traditional schematic notation is data flow oriented. In traditional schematic notation,
components have pins connected by nets. Pins have direction— they can be inputs, outputs, or
bi-directional, and must be connected to other compatible pins. For example an output of one
component must be connected to an input of another component. In systems that have
transaction level components we need to describe control flow as well as data flow.
Transaction-level models, which we’ll discuss in detail later, are constructed of function calls.
Activity is generated as functions in one component calls functions in other components.
Control flow refers to who calls whom.

Connecting separate components through well defined interfaces is a key tenet of the AVM and
those ideas are reflected in our notation. The graphical notation has three parts: components,
interfaces, and interconnect.

Components
A component is represented using a box.

Figure 1-1. Component Symbol

Components are instantiable objects such as modules (in SystemC) or modules, interfaces,
program blocks, or classes (in SystemVerilog). Components often have free running threads.
Sometimes, the location of threads in a design or testbench is important to understanding the
design. To show a component that has one or more threads we use a circular arrow.

Figure 1-2. A Component with a Thread

Advanced Verification Methodology Cookbook, 2.022

Cookbook Orientation
Cookbook Notation

July 24, 2006

Interfaces
Interfaces are the externally visible connections to components. All of a component’s behavior
is accessible and visible only through its interfaces. First, is the familiar pin interface.

Figure 1-3. A Component with a Pin Interface

The black boxes on the right side of the component represent pins.

Whereas pin interfaces move data represented at the bit level between components, transaction
interfaces move high level data between components.

Figure 1-4. Transaction Level Interfaces

Figure 1-4 represents two variations of transaction interfaces: a port and an export (in SystemC
parlance). The component on the left has a transaction port and the component on the right has
an export. An export makes an interface visible, and a port is a requirement to connect to an
export. A good way to think about transaction ports is as a set of unresolved function calls that
are resolved by exports. Ports and exports are complements of each other; ports connect to
exports. You cannot connect an export to an export, or a port to a port.

The port/export notation identifies the flow of control between components. Since a port
interface calls functions on an export, flow of control moves from ports to exports.

exportport

Cookbook Orientation
Cookbook Notation

Advanced Verification Methodology Cookbook, 2.0 23
July 24, 2006

Interconnect
Just like with traditional schematics, we use lines between interfaces to show the
interconnection amongst components. The addition of arrow heads allows us to represent data
flow.

Figure 1-5. Pin Level Data Flow

Arrows between pins show the direction that data flows between components. The figure above
shows, from top to bottom, flow from A to B, bi-directional between A and B, and flow from B
to A.

Figure 1-6. Transaction Data Flow

Figure 1-6 illustrates two configurations, each with the same transaction interfaces, but with
different data flow. In both configurations, a function in B is involved by A. A initiates activity
in B. A is the initiator and B is the target. In the top configuration, A moves data to B. This is
called a put operation. In the bottom configuration, A moves data from B back to itself. This is
called a get operation.

Channels
Transaction level components often communicate through channels. A channel is a component
that defines the semantics of the communication. One of the most common channels uses is a

A B

A B

A B

put configuration

get configuration

Advanced Verification Methodology Cookbook, 2.024

Cookbook Orientation
Cookbook Notation

July 24, 2006

FIFO. FIFOs are used to throttle communication between two transaction level components. To
show this in a netlist, we show a small box between components to represent the FIFO.

Figure 1-7. Two Components Communicating Through a FIFO

A FIFO, as with other communication channels, exports an interface. However, in the interest of
keeping the diagram uncluttered, the circles on the channel exports are optional and often
omitted. Just like vowels in Hebrew, exported interfaces on channels are obvious to conversant
readers.

Figure 1-7 shows two components, each with their own thread, and each with a transaction port
that connects to an intervening channel. Component A puts transactions into the FIFO channel
and component B gets transactions from the same channel. The data flow arrows in addition to
the transaction ports tell us which components are doing gets and which are doing puts. A has a
thread, a transaction port (as opposed to an export), and an arrow leading away from it. That
tells us that A is putting transactions into the channel. B also has a thread and a transaction port,
but the data flow arrow is leading into the component instead of away from it. That tells us that
B is getting transactions from the channel.

Summary
Our notation is an extension to traditional RTL schematic notation. The extensions let us show
transaction interfaces, channels, and data flow between components. Using this notation, we can
combine transaction level and RTL components on the same diagram, which is important for
diagramming testbenches.

fifo `

A B

Cookbook Orientation
Naming Conventions

Advanced Verification Methodology Cookbook, 2.0 25
July 24, 2006

Cookbook Orientation

Naming Conventions
Good quality code has a consistent look and feel. One of the ways to achieve a consistent look
and feel is to use a consistent naming scheme. This section documents the one we use for our
examples.

We have the slightly unusual problem of creating a naming convention that is consistent
between two languages, SystemC and SystemVerilog. For the most part both languages are well
behaved when it comes to naming so we were able to build a convention that works for both
languages with just a few minor differences. All the rules apply equally to both languages
except in places where it’s explicitly noted otherwise

A name is constructed from three parts, the prefix, the main part, and the suffix. The main part
of the name may consist of one or more words. All the parts -- prefix, suffix, and words in the
main part -- are separated by underbars. Some sample names:

avm_fifo
m_parent_p
finite_state_machine
top

The first name has a main part of “fifo” and a prefix of “avm.” The second name has all three
parts, a prefix m_, a main part of parent, and a suffix of _p. The third name has a main part with
three words but no suffix or prefix. The last name also has no suffix or prefix and the main part,
top, consists of only one word.

We advocate that you avoid abbreviations and use complete words whenever possible.

We call this the general naming scheme and it forms the basis for the rest of the kind-specific
naming schemes.

Names should also identify what kind of thing it’s naming. Below are rules for specific kinds of
names.

• class names

Class names use the general naming scheme. Classes that are part of a specific package
or library should use the same prefix for all members of the package or library.

avm_analysis_port
avm_fifo

• local variables

Local variables use the general naming scheme but have no prefix. They may have
suffixes depending on the kind of object being named.

• integer indexes

Advanced Verification Methodology Cookbook, 2.026

Cookbook Orientation
Naming Conventions

July 24, 2006

Use i, j, k for integer indexes. This is one place where single letter variable names are
acceptable.

int i;
int j;
for(i = 0; i < last; i++)
{

for(j = i; j < last; j++)
matrix[i,j] = compute_entry(i,j);

}

• class members

Class members are a different form of local variable. Instead of being local to a function
or task they are local to a class. To distinguish class members from local variables in a
function, task, or method, use the local variable convention and add a prefix of m_.

class bus_request
addr_t m_address;
data_t m_data;
request_t m_request_type;

endclass : bus_request

• local variables with suffixes

It greatly improves the readability of a program to quickly understand something about
the type or kind of object you are looking at in an expression without having to refer to
the declaration.

o pointers

Pointer use the local variable naming scheme and have a suffix of _p.

o handles

Handles appear in SystemVerilog and not in SystemC. Use the local variable naming
scheme and add a _h suffix

o type names

Type names that are created with typedef should use the local variable convention
and add an _t suffix.

typedef unsigned long int addr_t;
typedef sc_lv<16> bus_t;
typedef sc_port< sc_signal_in_if< sc_uint<32> > > bus_in_port_t;
typedef struct {bit [7:0] value} data_t;

• function/task/method names and formal arguments

Functions, tasks, and methods and their formal arguments use the same convention as
local variables - no prefixes or suffixes. A formal argument may be abbreviated if the
abbreviation is derived from its type.

Cookbook Orientation
Naming Conventions

Advanced Verification Methodology Cookbook, 2.0 27
July 24, 2006

function send(trasanction_t t, string parent);;

• macros

Macros are all uppercase letters and words are separated by underbars. We distinguish
between a macro and a named constant in SystemC. Macros are simply text to be
substituted at the appropriate point in a program using a preprocessor. Named constants
are constant values with a name known to the compiler and to the debugger.

#define MAX_SIZE 100
#define TRANSPORT(req,rsp) send(req);rsp=recv();

• parameters

Parameters are all uppercase letters and words are separated by underbars. An
abbreviation may be used if it is derived from its type. In SV, parameters or localparams
are preferred over macros to reduce order of compilation issues.

parameter type T = int;
localparam MAX_SIZE = 100;

• enumeration types and enumeration members

Enums need a suffix only if used as a defined type. In that case use _t. E.g.

typedef {mode_unidir, mode_bidir, mode_off} mode_t;

The members of enumerated types should all have the same prefix indicating what type
they belong to.

enum {color_red, color_blue, color_green, color_purple} color;
typedef enum {req_read, req_write, req_idle} req_t;

• interfaces

o modports have a _mp suffix

o interfaces have a _if suffix

interface bus_if;
...

endinterface : bus_if

class bus_if : public sc_interface
{

...
};

• packages

o packages have a _pkg suffix

• ports

Advanced Verification Methodology Cookbook, 2.028

Cookbook Orientation
Naming Conventions

July 24, 2006

Pin level ports should use the same naming conventions as formal arguments to a
function. Transaction level ports should use the suffix _port or _export as appropriate.
Use _ap as a suffix for analysis ports. If you have only one analysis port in a module,
which is quite common, just name it ap with no suffix or prefix.

sc_export<control_if> ctrl_export;
analysis_port error_ap, good_ap;

Verification Principles
Two Questions

Advanced Verification Methodology Cookbook, 2.0 29
July 24, 2006

Chapter 2
Verification Principles

The entire verification process is about comparing the designer’s intent with observed behavior
of the design to determine their equivalence. This basic principle often gets lost in the
discussion of testbenches, assertions, simulators, and all the other paraphernalia used in modern
verification flows. Keep this in mind as you read the rest of this text. Whenever we present a
concept or illustrate testbench construction technique, we will always clearly identify the
reference design and the design under test (DUT).

The DUT is the design in some form suitable for production: that is, a representation which can
be transformed into silicon (by a combination of automated and manual means). The reference
design captures the designer’s intent, what he means the design to do. The reference can take
many forms, such as a document describing the operation of the DUT, a golden model that
contains a unique algorithm, or assertions that represent a protocol, among others.

Figure 2-1. Comparing Design and Intent

The creation of a design, as a problem unto itself, is well understood by design engineers, and is
a topic beyond the scope of this text. Here, we confine our discussion to the problem of
capturing design intent, and then comparing the design and the intent to show their functional
equivalence.

Two Questions
Completing a verification project involves answering two questions: “Does it work?” and “Are
we done?”. These are very basic and obvious questions, yet they motivate all the mechanics of
every verification flow. The first question, “Does it work?” comes from the essential idea of
verification we discussed in the previous section. That is, does the design match the intent. The
second question, “Are we done?” asks if we have satisfactorily compared the design and intent
to conclude whether the design does, indeed, match the intent: or if not, why doesn’t it.

?

Observed
Behavior

Designer’s
Intent

Advanced Verification Methodology Cookbook, 2.030

Verification Principles
Two Questions

July 24, 2006

Let’s look now at how to apply these questions. The generalized flow chart in Figure 2-2 shows
the major elements of a verification flow and where to ask the key questions. The circled
numbers are reference points for the discussion of the flow.

Figure 2-2. Generalized Verification Flow

Each verification project starts with the design specification . The design specification
contains elaborate detail on the design construction and intent. The verification team uses the
design specification to build a verification plan. The verification plan contains a list of all the
questions that need to be answered by the verification process, and a description of the
mechanics for how they will be answered. Besides being a checklist for all the questions that
need to be answered, it also serves as a functional spec for the testbench .

Simulate

Modify
Stimulus

Debug
Design

Does it Work
?

Are we Done
?

No

Yes

No

Yes

Done

Testbench Design
Implementation

Verification
Plan

Design
Specification

2

5

4

3

1

Verification Principles
Two Questions

Advanced Verification Methodology Cookbook, 2.0 31
July 24, 2006

Once the testbench has been built the next step is to simulate the design implementation with the
testbench. The results of the simulation provide the information we can use to answer the two
questions. The first question is “Does it work?”. If the answer is “No”, then the design needs to
be debugged . This involves modifying the design to correct whatever errors, flaws, or
deficiencies that were encountered.

When it appears the design is functioning properly then it’s time to ask the next question: “Are
we done?” This is answered by looking at the coverage, how much of the design has been
exercised. What constitutes sufficient coverage is specified in the verification plan. If coverage
is insufficient, then the stimulus or the testbench needs to be modified in order for more of the
design to be exercised .

In an ideal world, a design has no bugs and the coverage is always sufficient so you would only
have to go around the loop once to get “yes” answers to both questions. In the real world, it can
take many iterations to achieve two “yes” answers. One objective of a good verification flow is
to minimize the number of iterations, in order to complete the verification project in the shortest
amount of time using the smallest number of resources.

Advanced Verification Methodology Cookbook, 2.032

Verification Principles
Two Questions

July 24, 2006

Verification Principles
Testbenches

Advanced Verification Methodology Cookbook, 2.0 33
July 24, 2006

Verification Principles

Testbenches
In this section we derive the essential features of a testbench. A testbench is a piece of software
organized as a set of interconnected verification components. Its mission is to answer the two
questions, “Does it work?,” and “Are we done?”.

In its most basic form, a testbench compares results obtained from operating the DUT with
expected results. This is illustrated in Figure 2-3. This sort of arrangement answers the question,
“Does it work?”. If the actual results match the expected results, the device under test does
indeed work — at least to the extent that the set of expected results are complete.

Figure 2-3. Very Basic Testbench

Our basic testbench has a file of stimulus, a means for applying the stimulus to the design, and a
means for collecting the results. Once the results are in place, we can compare the expected
results with the results collected from the operation of the design.

For a simple design with few input pins and few states, it can be straightforward to build the set
of expected results by hand. For any design of even moderate complexity, this can be a time
consuming task. A better way is to build a reference model that generates the expected results.
Figure 2-4 illustrates an infrastructure organization where the expected results and the DUT
results are generated from the same stimulus. If the DUT is working correctly, the comparator
will show that the operation of the reference and the DUT are identical.

DUT

Expected
Results

ResultsStimulus

Comparator

Advanced Verification Methodology Cookbook, 2.034

Verification Principles
Testbenches

July 24, 2006

Figure 2-4. Basic Testbench with Reference Model

Just like with the reference model, it may not be straightforward to write the stimulus as a
sequence of vectors. Usually, it is easier to write a program to generate the stimulus. Further, it
may not be necessary to store either the stimulus or the results in a file. Instead, the stimulus
generator can generate stimulus on the fly, and the comparator can compare results as they
arrive. This provides a more automated process, where the stimulus generation process and the
results comparison process are handled as part of the testbench.

Figure 2-5. Automated Testbench

Here, we can take the discussion up a level of generalization. When we replace “comparator”
with “question answerer” we can see how we can gather further, more complex sets of data. One
question that is very common and very powerful is “Does the functioning of the DUT match the
functioning of the reference model?”. Many such variations of questions can be implemented,
besides those which simply compare actual with expected results.

DUT

Expected
Results

Results

Stimulus
Comparator

Reference

DUT

Comparator

Reference

Stimulus
Generator

Verification Principles
Testbenches

Advanced Verification Methodology Cookbook, 2.0 35
July 24, 2006

Components that provide answers to questions of the “Does it work?” variety are generally
referred to as scoreboards. The term scoreboard originates from the computer architecture
world where structures, called scoreboards, are used to track activity in the system (such as an
instruction’s progress through a pipeline or cache misses, etc.), upon which decisions are made.
In verification, a scoreboard refers to a component that tracks information generated during a
verification simulation. The information gathered here is also for the purpose of making
decisions: To put it in our frame of reference, it is used to answer verification questions.

Another question we need answered is “Are we done?”. Information that we can use to make
this decision is collected in a coverage collector. It obtains information from stimulus
generators, scoreboards, and from the DUT about what has transpired during simulation.

A testbench with a scoreboard and coverage collector is shown in Figure 2-6.

Figure 2-6. Generalized Testbench

To summarize:

• Stimulus generators initiate activity in the system. The same stimulus is sent to both the
design under test and the scoreboard or reference model.

• The scoreboard observes the behavior of the DUT and answers questions of the form
“Does it work?” Scoreboards are a form of reference model.

• The coverage collector collects information about the operation of the DUT as the
simulation proceeds. The information in the coverage collector can be used to answer
questions of the form “Are we done?”.

DUT

Coverage
Collector

Scoreboard

Stimulus
Generator

Advanced Verification Methodology Cookbook, 2.036

Verification Principles
Testbenches

July 24, 2006

Verification Principles
A First Testbench

Advanced Verification Methodology Cookbook, 2.0 37
July 24, 2006

Verification Principles

A First Testbench
Let’s jump right in by illustrating how to verify one of the most fundamental devices in a digital
electronic design: an AND gate. Everyone knows how an AND gate works1 -- the output is the
logical and of the inputs. The function of this device is trivial and hardly worth its own
testbench. Because it is trivial, we can use it to illustrate some basic principles of verification
without delving into the details of a more complex design.

Figure 2-7. A 2-Input AND Gate

Our mission is to prove that our design, an AND gate, works correctly. To verify that it does
indeed perform an and function correctly, we need several things:

• a model that represents the DUT -- design under test (in this case, our DUT is the AND
gate)

• knowledge of what the design is supposed to do which can be codified as a reference

• some stimuli to exercise the design

• a way to compare the result of applying the stimuli to the known correctly output

All this stuff is assembled together in a testbench, the machinery surrounding the DUT that
exercises the design and determines if it works correctly or not. Figure 2-8 illustrates a
testbench for the AND gate:

Figure 2-8. Testbench

While our little testbench is very simple, it contains key elements found in most testbenches at
any level of complexity. The key elements are:

1. If you do not know how an AND gate works, or what an AND gate is, then you probably should start with
elementary texts on boolean logic and digital design.

A

B
Y

stimulus

scoreboard

A

B
Y

Advanced Verification Methodology Cookbook, 2.038

Verification Principles
A First Testbench

July 24, 2006

• DUT, the design under test

• stimulus generator — generates a sequence of stimuli for the DUT

• scoreboard — embodies the reference model

The scoreboard observes the inputs and outputs of the DUT, performs the same function as the
DUT except at a higher level of abstraction, and determines if the DUT and reference match.

This first testbench is illustrated in SystemC. SystemC is not necessarily the ideal language for
building a low-level testbench such as this one. However, we chose SystemC for this example to
make the point that testbench design is language neutral. We could easily have built this same
testbench in VHDL or Verilog. Although not listed here, the example tree contains a
SystemVerilog version of this design and testbench.

The DUT, design under test, is out two-input AND gate. Here’s what it looks like in SystemC:

29 class and2 : public sc_module
30 {
31 public:
32 sc_in<bool> A;
33 sc_in<bool> B;
34 sc_out<bool> Y;
35
36 and2(sc_module_name nm):
37 sc_module(nm),
38 delay_time(1.0)
39 {
40 SC_METHOD(delay);
41 sensitive << A << B;
42 dont_initialize();
43
44 SC_METHOD(compute);
45 sensitive << compute_event;
46 dont_initialize();
47 }
48 SC_HAS_PROCESS(and2);
49
50 void delay()
51 {
52 compute_event.notify_delayed(delay_time, SC_NS);
53 }
54
55 void compute()
56 {
57 Y = A && B;
58 }
59
60 private:
61 float delay_time;
62 sc_event compute_event;
63 };

We implemented the AND gate as a module with two inputs, A and B, and one output Y. The
run() method computes the value of Y from A and B. It is set to be sensitive to A and B so that

Verification Principles
A First Testbench

Advanced Verification Methodology Cookbook, 2.0 39
July 24, 2006

whenever either input changes value, a new value for Y is computed. Dont_initialize() is
called in the constructor to tell the simulator not to automatically call run() at time 0. This
makes the execution of run completely dependent on changes to inputs A and B.

Changes on inputs A or B do not directly cause a re-computation of the output Y. Instead, an
event is scheduled for some time in the future. When the event occurs then a new value of Y is
computed. This is how combinational delays are implemented in SystemC.

The stimulus generator generates directed stimulus. Each new value emitted by the stimulus
generator is specifically computed in a specific order. Later, we’ll look at random stimulus
generators which, as their name suggests, generate random values.

71 class stim_gen : public sc_module
72 {
73 public:
74 sc_out<bool> A;
75 sc_out<bool> B;
76
77 stim_gen(sc_module_name nm) :
78 sc_module(nm),
79 stimulus(0)
80 {
81 SC_METHOD(run);
82 }
83 SC_HAS_PROCESS(stim_gen);
84
85 void run()
86 {
87 A = stimulus[0];
88 B = stimulus[1];
89 stimulus++;
90 next_trigger(3, SC_NS);
91 }
92
93 private:
94 sc_int<2> stimulus;
95 };

The gist of the stimulus generator is to produce values for the output, A and B, which are fed
into the DUT. A 2-bit sc_int named stimulus contains the value to be assigned to A and B. It’s
incremented each successive iteration, the low order bit is assigned to A, and the high order bit
is assigned to B.

The stimulus generator operates as an endless loop, yet no looping construct appears in the
code! How does that work? The answer contains two parts -- initiating the loop and continuing
the loop. Notice that the run() method is not sensitive to any inputs (mainly because there
aren’t any inputs to the stimulus generator, only outputs). Recall in the AND gate module, after
setting up the sensitivity list for the run() method, we make a call to dont_initialize(),
which instructs the simulator to not call the run() method at time 0. Here, to initiate our loop,
we leave out the dont_initialize() call, thus implicitly instructing the simulator to call
run() at time 0.

Advanced Verification Methodology Cookbook, 2.040

Verification Principles
A First Testbench

July 24, 2006

Ok, so we got it started, now how to repeat? The call to next_trigger() performs that function
for us. It schedules the current method to be called again. The argument to next_trigger() is
the time delay to the next invocation. In our case we use 1ns, but the value of the number is not
critical. The only constraint is that it must be greater than 0. A 0 delay would not allow the AND
gate to operate and would simply cause the stimulus generator to loop endlessly until the
simulator is stopped manually, or it gives up in disgust (usually this happens if too many delta
cycles are executed at the same time step).

The most interesting module in our tiny testbench is the scoreboard. It watches the activity on
the DUT and reports back whether it operated correctly or not1. One important thing to notice is
that the structure of the scoreboard is strikingly similar to the structure of the DUT. This makes
sense when you consider that the purpose of the scoreboard is to track the activity of the DUT
and determine whether or not the DUT is working as expected.

100 class scoreboard : public sc_module
101 {
102 public:
103 sc_in<bool> A;
104 sc_in<bool> B;
105 sc_in<bool> Y;
106
107 sc_event input_change_event;
108
109 scoreboard(sc_module_name nm) :
110 sc_module(nm)
111 {
112 SC_METHOD(input);
113 sensitive << A << B;
114
115 SC_METHOD(checker);
116 sensitive << check_event;
117 dont_initialize();
118
119 truth_table[0]= 0;
120 truth_table[1]= 0;
121 truth_table[2]= 0;
122 truth_table[3]= 1;
123
124 cout << “\t\tA B : Y” << endl;
125 }
126 SC_HAS_PROCESS(scoreboard);
127
128 void input()
129 {
130 cout << sc_time_stamp() << “\t\t” << A << “ “ << B
131 << “ : applying stimulus” << endl;
132 check_event.notify_delayed(2, SC_NS);
133 }
134

1. For anything more sophisticated than an AND gate the monitor and response checker would be separate
components in the testbench. For the trivial AND gate testbench, this would be more trouble than it’s worth
and would cloud the basic principles we are illustrating.

Verification Principles
A First Testbench

Advanced Verification Methodology Cookbook, 2.0 41
July 24, 2006

135 void checker()
136 {
137 unsigned truth_index = (A << 1) | B;
138 // check Y against truth table
139 bool match = (Y == truth_table[truth_index]);
140 cout << sc_time_stamp() << “\t\t” << A
141 << “ “ << B << “ : “ << Y;
142 cout << “ “ << (match ? “yes!” : “<<--no”) << endl;
143 }
144
145 private:
146 bool truth_table[4];
147 sc_event check_event;
148 };

The first thing to notice about the scoreboard is that all the pins are inputs. The scoreboard does
not cause activity on the design, it passively watches the inputs and outputs of the DUT. Our
scoreboard has two methods, input_change() and checker(). Input_change() is sensitive
to the inputs A and B, referring to the inputs of the DUT. Checker() is sensitive to the
somewhat mysterious check_event. What’s that all about?

To answer that question, let’s first look at what it is the scoreboard is supposed to do. We want
the scoreboard to tell us if the output from the DUT is correct with respect to the input values.
The simplest way to do that is to have the scoreboard wake up any time the output changes, and
then check to see if the output value is correct. But sometimes A and B change but Y does not.
Why? The simulator performs a simple optimization: if the new value of a signal is the same as
the current value then the update event is not scheduled. Why bother changing a 1 to a 1 or a 0
to a 0? Doing so just takes compute cycles and accomplishes nothing. So if A were 0 and B
were 1, for example, and the input values changed so that A were now 1 and B were now 0, Y
would not change. This is because and(0,1) is equal to and(1,0), which is equal to 0. When this
happens, or other input changes that do not cause Y to change, we still want to know if the
answer is correct. Just because the value didn’t change is no reason to believe that it’s correct.
We need to verify the correctness of Y.

We get around the simulator optimization with the method input(). Anytime either A or B
changes input() is invoked. It has one simple thing to do: cause checker() to be involved
some time later. We’ll discuss exactly how much time later in a minute. It does this by
scheduling an event, check_event, for a future time. Checker() is sensitive only to
check_event. This means that the checking of whether or not Y = A & B is no longer
dependent on Y changing.

The delay on the AND gate is 1ns. Any time an input changes the output will appear 1ns later.
To make sure that the scoreboard is checking only valid values, (ones that have settled after the
timing delay) the scoreboard invokes the checker() method 2ns after an input changes. This
guarantees that the value of Y we are checking is indeed due to the changes on A or B and not a
spurious value generated as part of an intermediate calculation. We’d really like to check Y
immediately after it changes. To do that, we would schedule check_event to trigger 1ns after
an input change. Unfortunately, if the checker() and the change to Y are scheduled at the same
time, we have no way of predicting which will happen first. If checker() runs before Y has

Advanced Verification Methodology Cookbook, 2.042

Verification Principles
A First Testbench

July 24, 2006

been updated we’ll be checking the wrong thing. To avoid this problem, we push the check out
a nanosecond so that we can force the update to Y to happen before checker() executes. The
stimulus generator generates a new input value for A and B every 3ns, giving plenty of time for
the AND gate to settle and the scoreboard to do its checking.

The top level module, shown below, is completely structural; it contains instantiations of the
DUT, the scoreboard, and the stimulus generator along with the code necessary to connect them
together.

153 class top : public sc_module
154 {
155 public:
156 sc_signal<bool> A;
157 sc_signal<bool> B;
158 sc_signal<bool> Y;
159
160 top(sc_module_name nm):
161 sc_module(nm),
162 a(“and”),
163 s(“stim”),
164 b(“score”)
165 {
166 a.A(A);
167 a.B(B);
168 a.Y(Y);
169
170 s.A(A);
171 s.B(B);
172
173 b.A(A);
174 b.B(B);
175 b.Y(Y);
176 }
177
178 and2 a;
179 stim_gen s;
180 scoreboard b;
181 };

When we run the simulation for 50ns here’s what we get: The display messages come in pairs.
The first one of each pair announces that new stimulus is being applied. The second one checks
to see if the applied stimulus resulted in a correct response.

Verification Principles
A First Testbench

Advanced Verification Methodology Cookbook, 2.0 43
July 24, 2006

 A B : Y
0 s 0 0 : applying stimulus
2 ns 0 0 : 0 yes!
3 ns 1 0 : applying stimulus
5 ns 1 0 : 0 yes!
6 ns 0 1 : applying stimulus
8 ns 0 1 : 0 yes!
9 ns 1 1 : applying stimulus
11 ns 1 1 : 1 yes!
12 ns 0 0 : applying stimulus
14 ns 0 0 : 0 yes!
15 ns 1 0 : applying stimulus
17 ns 1 0 : 0 yes!
18 ns 0 1 : applying stimulus
20 ns 0 1 : 0 yes!
21 ns 1 1 : applying stimulus
23 ns 1 1 : 1 yes!

This simple testbench illustrates the usage of a stimulus generator, a reference, and a
scoreboard. Although the DUT is a simple AND gate, all the elements of a complete testbench
are present.

Advanced Verification Methodology Cookbook, 2.044

Verification Principles
A First Testbench

July 24, 2006

Verification Principles
A Second Testbench

Advanced Verification Methodology Cookbook, 2.0 45
July 24, 2006

Verification Principles

A Second Testbench
The previous example illustrated elementary verification concepts using a combinational
design, specifically an AND gate. Combinational designs, by their very nature, do not maintain
any state. In this example, we look at a slightly more complex design that maintains state data
and uses a clock to cause transitions between states. Synchronous (clocked) designs with
internal state are very common in both small and large designs

The design, shown in Figure 2-9, is a 3-bit counter with an asynchronous reset. Each time the
clock pulses high, the count increments. The design is composed of three toggle flip-flops, each
of which maintain a single bit of the counter. The flip flops are connected together with some
combinational logic to form a counter. Each toggle flip flop toggles when the T input is high.
When T is low the flip flop maintains its current state. When the active low reset is set to 0 then
the flip flop moves to a 0 state.

Figure 2-9. 3-bit Counter

The code for the counter is contained in two modules: One is a simple toggle flip flop, and the
other connects the flip flops together with the necessary glue logic to form a counter.

23 module toggle_ff(t, q, reset, clk);
24 input t;
25 input reset;
26 input clk;
27 output q;
28
29 wire t;
30 wire reset;
31 wire clk;
32 bit q;
33
34 always @ (posedge clk)
35 begin

Q

T

RESET Q

T

RESETQ

T

RESET

clk

reset

Q2 Q1 Q0

1

Advanced Verification Methodology Cookbook, 2.046

Verification Principles
A Second Testbench

July 24, 2006

36 if(t == 1)
37 begin
38 q = !q;
39 end
40 end
41
42 always @ (negedge reset)
43 begin
44 q = 0;
45 end
46 endmodule

The counter is comprised of three toggle flip-flops and an AND gate.

51 module counter(q, reset, clk);
52 input reset;
53 input clk;
54 output q;
55
56 wire clk;
57 wire reset;
58 wire [2:0] q;
59
60 toggle_ff ff0 (1’b1, q[0], reset, clk);
61 toggle_ff ff1 (q[0], q[1], reset, clk);
62 toggle_ff ff2 (t2, q[2], reset, clk);
63 and a1 (t2, q[0], q[1]);
64 endmodule

The design is very straightforward but has characteristics that are common in real designs, and
which require some attention in order to properly verify it. The key characteristics are that the
design is driven by a clock and it maintains internal state. The AND gate from the previous
example does not maintain any state. All of the information about what the design is doing can
be gleaned from its pins. In a design with internal data that’s not the case. This difference is
reflected in the design of our scoreboard. Figure 2-10 shows the organization for the testbench
for the 3-bit counter.

Verification Principles
A Second Testbench

Advanced Verification Methodology Cookbook, 2.0 47
July 24, 2006

Figure 2-10. Testbench Organization for 3-bit Counter

In many respects the testbench for the 3-bit counter is much like the one for the AND gate. Both
have a scoreboard whose role is to watch what the design is doing and determine whether or not
it’s working correctly. Both have a device for driving the DUT. For the AND gate we used a
stimulus generator and for the 3-bit counter we use a controller.

The 3-bit counter is a free running device. As long as it’s connected to a clock, it will continue
to count. So we don’t need a stimulus generator as we did with the and gate. Instead, the
controller manages the operation of the DUT and testbench. The controller provides an initial
reset so that the count starts from a known value. It also stops the simulation at the appropriate
time.

module control(clk, reset);
input clk;
output reset;
bit reset;

initial
begin

@clk;
reset = 0;
@clk;
reset = 1;
#200;
$finish;

end
endmodule

DUT
counter

q0

q1

q2

clk

reset

scoreboard

q0

q1

q2

clk

control

clk

reset

clkgen

reset

Advanced Verification Methodology Cookbook, 2.048

Verification Principles
A Second Testbench

July 24, 2006

The scoreboard must track the internal state of the DUT. It does this using the variable count.
Like the DUT, when reset is activated count is set to 0. Each clock cycle the count increments,
and the new count is compared with the count from the DUT.

module scoreboard(q, reset, clk);
input q;
input reset;
input clk;

wire reset;
wire clk;
wire [2:0] q;

int count;

always@(negedge reset)
begin

count = 0;
end

always @(posedge clk)
begin

count = count + 1;
if(count > 7)

count = 0;
#0;
if (count == q)
$display("time=%t q=%b count=%d match!", $time, q, count);

else
$display("time=%t q=%b count=%d <-- no match", $time, q, count);

end
endmodule

The scoreboard has a high level model of the counter. It uses an integer variable and the plus (+)
operator to form a counter, instead of flip-flops and And gates. Each time the clock pulses, it
increments its count, just like the RTL counter. It also compares to see if its internal count
matches the output of the counter DUT.

For completeness, we show the clock generator and top level module. The clock generator
simply initializes the clock to 0 and then toggles it every 5ns.

Verification Principles
A Second Testbench

Advanced Verification Methodology Cookbook, 2.0 49
July 24, 2006

module clkgen(clk);
output clk;
bit clk;

initial
begin

clk = 0;
end

always
begin

#5;
clk = !clk;

end
endmodule

The top level module is typical of most testbenches. It connects the DUT and the testbench
components together.

module top;
wire [2:0] q;

clkgen ckgn (clk);
counter cntr (q, reset, clk);
control ctrl (clk, reset);
scoreboard score (q, reset, clk);

endmodule

We’ve illustrated a simple testbench that contains the elements used in much more sophisticated
testbenches. Sequential designs that maintain internal state require a scoreboard that operates in
parallel with the DUT. It performs the same computations as the DUT but at a higher level of
abstraction. The scoreboard also compares its own computation with inputs received from the
DUT via a scoreboard.

Advanced Verification Methodology Cookbook, 2.050

Verification Principles
A Second Testbench

July 24, 2006

Overview of the AVM
Verification Components

Advanced Verification Methodology Cookbook, 2.0 51
July 24, 2006

Chapter 3
Overview of the AVM

Merriam-Webster defines methodology as: “a body of methods, procedures, working concepts,
rules, and postulates employed by a science, art, or discipline.”1 In our case, the
science/art/discipline is functional verification — the art and science of verifying electronic
systems. The AVM is a way to build pieces of software, called testbenches, whose function is to
verify electronic designs.

Verification Components
Just as a design is a network of design components, a testbench is a network of verification
components. Rather than just building arbitrary components, we recommend that you build a
testbench out of certain kinds of components which we describe in this section. It’s easier to
debug components with well defined behaviors and interfaces. Using these kinds of components
also improves reusability.

Concentric Testbench Architecture
AVM testbenches are organized in a set of layers. The layers are defined in the Figure 3-1.

1. “methodology.” Webster's Third New International Dictionary, Unabridged. Merriam-Webster, 2002.
http://unabridged.merriam-webster.com (7 May 2006).

Advanced Verification Methodology Cookbook, 2.052

Overview of the AVM
Verification Components

July 24, 2006

Figure 3-1. AVM Testbench Architecture Layers

The bottom layer is the pin level DUT. Above that is a a set of transactors used to convert
between pin level activity and streams of transactions. All components above the transactor
layer are at the transaction level.

You can also view a testbench as a concentric organization of components.

DUT

transactors

control

analysis

environment

untimed
transaction level

untimed
transaction level

untimed
or
partially timed
transaction level

transactions
pins

pins

test controller

coverage collectors
performance analyzer
scoreboards
golden models

stimulus generators
masters
slaves
constraints

drivers
monitors
responders

pin level design

Proto
co

l-
sp

ecific
D

esig
n
-sp

ecific
T
estb

en
ch

-
sp

ecific

Overview of the AVM
Verification Components

Advanced Verification Methodology Cookbook, 2.0 53
July 24, 2006

Figure 3-2. Concentric Testbench Organization

Transactors
The role of a transactor in a testbench is to convert a stream of transactions to pin level activity
or vice versa, convert pin level activity into a stream of transactions. Transactors are
characterized by having at least one pin level interface and at least one transaction level
interface. Transactors come in a wide variety of shapes, colors, and styles, we’ll focus on
monitors, drivers, and responders.

Monitor
A monitor, as the name implies, monitors a bus. It watches the pins and converts their wiggles
to a stream of transactions. Monitors are passive, meaning they do not affect the operation of the
DUT in any way.

Driver
A driver converts a stream of transactions into pin level activity.

Responder
A responder is much like a driver, but it responds to activity on pins rather than initiating
activity.

DUT responderdrivermaster/
stim gen

monitor monitor

scoreboard

coverage

controller

slave

Transactor layer

Advanced Verification Methodology Cookbook, 2.054

Overview of the AVM
Verification Components

July 24, 2006

Environment Components
The environment is the set of components that provide all the things the DUT needs to operate.
The environment components are responsible for generating traffic for the DUT. They are all
transaction level components and have only transaction level interfaces. The ways to generate
stimulus are as varied as the kinds of devices there are to verify, we’ll look at three general
kinds of environment components: stimulus generators, masters, and slaves

Stimulus Generator
Stimulus generators create a stream of transactions for stimulating the DUT. Stimulus
generators can be random, directed, or directed random; they can be free running or have
controls; and they can be independent or synchronized. The simplest stimulus generator
randomizes the contents of a request object and sends that object to a driver.

A scenario generator is a form of stimulus generator. Instead of simply generating a stream of
randomized requests, a scenario generator generates directed or directed random sequences that
are intended to perform a specific function on the DUT, or exercise a particular scenario.

Master
A master is a bi-directional component that sends requests and receives responses. Masters
initiate activity. Like scenario generators, they can send individual randomized transactions, or
sequences of directed or directed random transactions. Masters may use the responses to
determine their next course of action.

Slave
Slaves, like masters are bi-directional components. They respond to requests and return
responses (in contrast with masters that send requests and receive responses).

Analysis Components
Analysis components receive information about what’s going on in the testbench and use that
information to make some determination about the correctness or completeness of the test. Two
common kinds of analysis components are scoreboards and coverage collectors.

Scoreboard
Scoreboards are used to determine correctness of the DUT. Scoreboards tap off information
going into and out of the DUT and determine if the DUT is responding correctly to its stimulus.

Coverage Collector
Coverage collectors count things. They tap into streams of transactions and count the
transactions or various aspects of the transactions. The purpose is to determine completeness of
the simulation. The particular things that a coverage collector counts is dependent on the design

Overview of the AVM
Two Domains

Advanced Verification Methodology Cookbook, 2.0 55
July 24, 2006

and the specifics of the test. Common things that coverage collectors count include: number of
transactions, number of transactions, number of transactions that occur in a particular segment
of address space, number of errors, etc. The list is limitless.

Coverage collectors can also perform computations as part of a completeness check. For
example, a coverage collector may keep a running mean and standard deviation of data begin
tracked. Or it may keep a ratio of errors to good transactions.

Controller
Controllers form the main thread of a test and orchestrate the activity. Typically controllers
receive information from scoreboards and coverage collectors and send information to
environment components.

For example, a controller may start a stimulus generator running and then wait for a signal from
a coverage collector to notify it when the test is complete. The controller in turn stops the
stimulus generator. More elaborate variations on this theme are possible. A controller supplies a
stimulus generator with an initial set of constraints and starts the stimulus generator running.
When a particular ratio of packet types is achieved, the coverage collector signals the controller.
Rather than stopping the stimulus generator, the controller may send it a new set of constraints.

Two Domains
We can view the set of components in a testbench as belonging to two separate domains. The
operational domain is the set of components, including the DUT, that operate the DUT. These
are the stimulus generators, BFMs, and similar components that generate stimulus and provide
responses that drive the simulation. The analysis domain contains the set of components that
watch and analyze the operation. The DUT, responder, and driver transactions — along with the
environment components that directly feed or respond to drivers and responders — comprise
the operational domain. The rest of the testbench components, monitor transactors, scoreboards,
coverage collectors, and controller, comprise the analysis domain.

Data must be moved from the operational domain to the analysis domain in a way that does not
interfere with the operation of the DUT, and so that event timing is preserved. This is
accomplished with a special communication channel called an analysis port. Analysis ports are
a special kind of transaction port in which a publisher broadcasts data to one or more
subscribers1. The publisher signals all the subscribers when it has new data ready.

One of the key features of analysis ports is they have a single interface function, write().
Analysis fifos, the channels used to connect analysis ports to analysis components, are

1. Analysis ports are implemented using the observer object oriented design pattern. Design patterns,
including the observer pattern, are discussed in the seminal book on the topic: “Design Patterns: Elements of
Reusable Object-Oriented Software,” by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(the gang of four), Addison -Wesley, October 1994.

Advanced Verification Methodology Cookbook, 2.056

Overview of the AVM
Object Oriented Programming Style

July 24, 2006

unbounded. This guarantees that the publisher doesn’t block and it deposits its data into the
analysis fifo in precisely the same delta cycle in which it was generated. Analysis ports and
analysis fifos are discussed in more detail in Chapter 7.

Object Oriented Programming Style

Objects as Components
Software engineering, unconstrained by the physics of electricity and magnetism, has long
sought to build reusable, interchangeable, robust components. An important body of thought
and techniques on that problem is called object oriented programming. The central idea of
object oriented programming (OOP), is that programs are organized as a collection of
interacting objects, each with their own data space and set of functionality.

An essential feature of an object is its interface, the collection of methods which are available to
users of the object. Methods are functions which operate the object and are the only means to
access data inside the object. A properly built object does not allow access to its internal data
except through its interface.

Interestingly, HDLs, such as Verilog and VHDL, operate using some similar concepts. Modules
in Verilog, for example, are objects each with their own data space and their own set of tasks
and functions. Just like objects in OO programs, each instance of a module is an independent
copy. All instances share the same set of tasks and functions and the same interfaces, but the
data contained inside each one is independent from all other instances. Modules are controlled
by their interfaces. Verilog modules do not support inheritance, type parameterization, and are
static, which makes them unsuitable for true object oriented programming. Table 3-1 compares
features of classes in Verilog, SystemVerilog, and C++.

Table 3-1. Comparison of Classes and Modules

Feature Verilog
Modules

C++
Classes

SystemVerilog
Classes

local data space yes yes yes

function interface kind of yes yes

port interface yes no yes

inheritance no yes/multiple yes/single

type parameterization no yes yes

dynamic no yes yes

Overview of the AVM
Object Oriented Programming Style

Advanced Verification Methodology Cookbook, 2.0 57
July 24, 2006

The similarity between objects and modules opens up an opportunity for us to use class objects
in a hardware context. We can create verification components as instances of classes, giving us
the flexibility of classes along with connection to hardware elements. The designers of
SystemVerilog have capitalized on this relationship when extending Verilog with classes,
providing the capability for a class to work a lot like modules.

The SystemVerilog feature that makes this possible is the virtual interface. A virtual interface is
a reference to an interface (here we refer to the SystemVerilog interface construct). A class can
be written containing references to items inside an interface that doesn’t yet exist. When the
class is instantiated, the virtual interface is connected to a real interface. This makes it possible
for a class object to both drive and respond to pin activity. SystemC modules are implemented
as classes and allow for pins to be in the port list, providing the same sort of structure.

Advanced Verification Methodology Cookbook, 2.058

Overview of the AVM
Object Oriented Programming Style

July 24, 2006

Sidebar: Simula 67

The relationship between class objects and hardware simulation has been around for quite
some time. Simula 671, one of the earliest object oriented programming languages, was
developed explicitly for the purpose of building discrete event models. Simula has the
notion of class objects and a simulation kernel. It even has a kind of PLI for connecting in
external Fortran programs. Simula provides DETACH and RESUME keywords which
allow processes to be spawned and reconnected, sort of a fork/join. It has a special built-in
class called SIMULATION which provides event list features.

Even though the terms object or object oriented are not used at all in Simula 67, all modern
object oriented programs can trace their lineage to this early programming language.
Discrete event simulation languages also can trace their genesis to Simula 67. For many,
bringing together the ideas of object oriented programming and hardware simulation seems
new, in fact the two ideas were born together and only later parted ways. Using object
oriented programming with a discrete event simulator brings us full circle.

According to Ole-Johan Dahl and Kristen Nygaard, Dept. of Informatics, University of
Oslo2:

Simula 67 still is being used many places around the world, but its main impact has
been through introducing one of the main categories of programming, more
generally labelled object-oriented programming. Simula concepts have been
important in the discussion of abstract data types and of models for concurrent
program execution, starting in the early 1970s. Simula 67 and modifications of
Simula were used in the design of VLSI circuitry (Intel, Caltech, Stanford). Alan
Kay's group at Xerox PARC used Simula as a platform for their development of
Smalltalk (first language versions in the 1970s), extending object-oriented
programming importantly by the integration of graphical user interfaces and
interactive program execution. Bjarne Stroustrup started his development of C++ (in
the 1980s) by bringing the key concepts of Simula into the C programming
language. Simula has also inspired much work in the area of program component
reuse and the construction of program libraries.

1. Lamprecht, Gunther, “Introduction To Simula 67,” Vieweg, 1983
2. http://heim.ifi.uio.no/~kristen/FORSKNINGSDOK_MAPPE/F_OO_start.html

Overview of the AVM
Object Oriented Programming Style

Advanced Verification Methodology Cookbook, 2.0 59
July 24, 2006

Inheritance
In an object oriented program, objects exist in relation to one another. There are different kinds
of relationships which are useful. The two most common kinds of relationships are IS-A and
HAS-A.

Two object are related by HAS-A when one has a reference or a pointer to another. In the
example below, A “has a” reference to B.

Figure 3-3. Example of a HAS-A relationship

Objects created with inheritance are composed using IS-A. The derived object is considered a
sub-class, or a more specialized version of the parent object.

To illustrate the notion of inheritance, let’s look at a portion of the taxonomy of mammals.

Figure 3-4. IS-A Example: Mammal Taxonomy

Animals which are members of the cetacia, carnivora, or primate orders are mammals. These
very different kinds of creatures share the common trait of mammals. Yet cetacia (whales,
dolphins), carnivora (dogs, bears, raccoons), and primates (monkeys, humans) each have their
distinct and unmistakable characteristics. A bear and a whale are both mammals but each
belongs to their own order. To use OO terminology, a bear IS-A carnivora and a carnivora IS-A
mammal. The object bear is composed of attributes of both mammals and carnivoras plus
additional attributes that distinguish it from other carnivoras.

A

B

Mammalia

Cetacia Carnivora Primates

Advanced Verification Methodology Cookbook, 2.060

Overview of the AVM
Object Oriented Programming Style

July 24, 2006

When composing two objects in a computer program together using inheritance, the new
derived object contains characteristics of the parents and usually additional characteristics. In
the example below, the object B is derived from A.

Figure 3-5. Example of IS-A relationship

Here’s what this composition looks like in SystemVerilog:

class A;
int i;
float f;

endclass

class B extends A;
string s;

endclass

Since class B is derived from A, it contains all the attributes of A. Any instance of B not only
contains the string s, but also the floating point value f and the integer i.

This is but a brief introduction to the idea of inheritance in object oriented programming. For
references to texts with more in depth discussion of inheritance and other object oriented
concepts and techniques see the bibliography in appendix B.

The AVM uses inheritance to provide uniform functionality for verification components. When
you build an object by deriving it from a base class, you can take advantage of all the
functionality in the base class. The AVM kit includes a library of base classes. You create your
own classes by deriving them from ones in library. Through inheritance, your new class has
available all of the functionality in the base class.

Interfaces
To make an object or module reusable and inheritable, it is important that it’s operated only
through its defined interfaces. This ensures that its internal state stays consistent and allows the
internal functions to make assumptions about the state, whereas if the state could be modified
by any external function, then every internal function would have to constantly execute
consistency checks.

B

A

Overview of the AVM
Object Oriented Programming Style

Advanced Verification Methodology Cookbook, 2.0 61
July 24, 2006

Just as a garden hose has male and female fittings to connect it to a faucet, and a table lamp has
a plug which mates with a wall outlet which supplies electricity to light the lamp — object
interfaces have two parts which must mate (or bind, in programming parlance) in order for two
objects to be connected. One side of the interface provides functionality and the other side
requires the functionality. As long as the two match then it is possible for data and control to be
exchanged between the two objects. The requires/provides paradigm is the basis for connecting
verification components at the transaction level as well as at the hardware (pin) level. First, a
hardware oriented illustration.

module requires(input clk, input request, input addr, output data);
...
endmodule

The requires module needs a clock, request bit, and address, and when those things are received
in the right order at the right time, then the module responds with some data.

module provides(output clk, output request, output addr, input data);
...
endmodule

The pin interface for the provides module supplies all the pieces needed to bind to the requires
module.

The mechanics of a transaction interface work a bit differently, but the principle is the same.

class interface : public sc_interface
{

public:
virtual data_t fcn(addr_t addr) = 0;

};

The interface class is “pure virtual,” meaning that it implements nothing and consumes no
memory. It provides function prototypes which define the number, order, and type of the
arguments, as well as the type of the return value. The virtual keyword means that the function
can be overloaded in a derived object. The virtual keyword has the same meaning in
SystemVerilog. The interface class supplies the function prototype of all the functions that
comprise the interface. In our examples we have one interface function called fcn. The provides
class is expected to provide an implementation of the interface function and the requires class
will call it, thereby requiring an implementation to be available somewhere. A top level class
binds the requires and the provides objects.

class provides : public sc_module, public interface
{

public:
...

data_t fcn(addr_t addr)
{ ... }

};

The provides class supplies an implementation of fcn() and the requires class invokes fcn()
through a port (well, actually an export);

Here we provide an
implementation of fcn

Advanced Verification Methodology Cookbook, 2.062

Overview of the AVM
Summary

July 24, 2006

class requires : public sc_module
{

public:
...

sc_export<interface> port;

void run()
{

...
data = port->fcn(addr);

}
};

The requires and provides modules are bound together in an object that forms their hierarchical
parent of requires and provides.

class top : public sc_module
{

public:
top(sc_module_name nm) : sc_module(nm)
{

r.port(p);
};

private:
requires r;
provides p;

};

The requires/provides paradigm is essential to the AVM. We’ll see later how this is used in
SystemVerilog to connect objects together at the transaction level.

Summary
The problem of building complex verification infrastructures is reduced when you can build
them as collections of small, well defined components with well defined interfaces. The
problem is further reduced when you make those components reusable. The AVM supports the
building of such components through the use of standard TLM interfaces and object oriented
programming techniques.

Here we establish the requirement
for fcn via the interface

Here we invoke fcn() through
the port which owns the
requirement that such a function
exist

Bind the requires port
to the provides object.

Introduction to TLM

Advanced Verification Methodology Cookbook, 2.0 63
July 24, 2006

Chapter 4
Introduction to TLM

The process of designing an electronic system involves taking an abstract idea and replacing the
abstractions with concrete details which can be manufactured in silicon. Some abstractions have
been carefully defined and codified and have become the medium in which designs are
rendered. RTL is a very common abstraction used to create designs. There are many tools based
on the RTL abstraction that make it a convenient way to initiate the design and verification
process.

As designs get larger and more complex it becomes convenient to use a higher level of
abstraction, a medium that has less detail. Transaction Level Modeling (TLM) is becoming
increasingly popular as a way to create the first incarnation of a design which can be simulated
and analyzed.

RTL models communicate with each other at the pin level. Bits are individually sent over wires.
The medium used to communicate between elements is the net. A net has well defined
simulation semantics: it can hold a single bit value at any one time, and its value changes when
a driving component schedules a change. When the net changes values, all the components that
are driven by the net must be re-evaluated to reflect this new change on one of their inputs.

Transaction level models consist of multiple processes communicating with each other by
sending transactions back and forth through channels.

In their book “System Design with SystemC,” Grötker et. al., discuss models of computation.
They define a model of computation as having three components:

• A model of time

• Methods of communication between concurrent processes

• Rules for process activation

RTL modeling has a discrete model of time, communication between processes is done using
nets, and process activation occurs when an input net of a process changes its value.

Transaction level models can be timed or untimed and communicate between processes via
channels. Instead of sending individual bits back and forth, the processes communicate by
sending transactions to each other.

The world of transaction level modeling encompasses a range of models of computation with
different time, communication, and process activation models. In each case, however, the
contents of the communication is at a higher level of abstraction than individual bits. The

Advanced Verification Methodology Cookbook, 2.064

Introduction to TLM

July 24, 2006

objects moved back and forth between processes are called transactions. You could easily make
the case that a transfer of a single bit is a transaction, in the most general sense. Therefore, since
TLM is a proper superset of RTL modeling (all RTL models are also transaction level models),
we restrict ourselves to the cases involving higher levels of abstractions than bits when
discussing transactions.

Definition of a Transaction
In order to talk about transaction level modeling we first need to define transactions.

This is the most general definition of transaction. It says that all the stuff that occurs in a design
(or a module or subsystem within a design) between two time points can be called a transaction.
While that’s accurate and very general, it’s not particularly useful. A more useful definition is

This is the hardware oriented notion of a transaction. When looking at a piece of hardware you
can easily identify entities between which control or data is transferred. In a bus based design
reads and writes on a bus can be considered transactions. In a packet-based communication
system sending a packet is a transaction. When you look at bus-based designs or
communication designs it’s easy to identify operations that occur where data or control is
transferred between two entities.

This is the software oriented notion of a transaction. In a transaction level model activity is
initiated by making function calls. The function call contains parameters which are “sent” to the
called function, and the return value of the function contains data that is sent back from the
called function. The called function could block and cause time to pass (in a timed system) or it
could return immediately.

Representing Transactions
To build transaction level models, we need to represent transactions so that we can manipulate
them. There are three ways to represent transactions:

A transaction is a quantum of activity that occurs in a design bounded by time.

A transaction is a single transfer of control or data between two entities.

A transaction is a function call.

Introduction to TLM

Advanced Verification Methodology Cookbook, 2.0 65
July 24, 2006

1. function calls

2. transaction objects

3. transaction recording

None is preferred over the other, each is most appropriate in different situations.

Function Calls
Function calls are used to initiate activity in a transaction. That makes it easy to say a function
call is a transaction or a transaction is a function call. For example, consider this code fragment
of a burst read operation.

void burst_read(addr_t base_addr, data_t *data, int length)
{

for(int i=0; i<length; i++)
{

data[i] = bus_read(base_addr + i);
}

}

The function burst_read represents a transaction which is the aggregate of a sequence of
individual read transactions. In both cases, burst_read and read, the function initiates some
activity which completes “under the hood.” Whatever the low level operations are that were
exercised to execute the read function in aggregate, they form a read transaction.

Transaction Objects
At its essence, transaction level modeling is about modeling communicating processes. The
items that transaction level processes send back and forth between each other are transactions.
Consider the burst_read example. The process that executes the fragment of code that initiates
the read may not necessarily be the process that holds the memory which is being read. Let’s
say our system is organized as shown in Figure 4-1.

Figure 4-1. Bus-based System

master

memory

Advanced Verification Methodology Cookbook, 2.066

Introduction to TLM

July 24, 2006

A number of masters and slaves are connected to a single bus. A master initiates a burst read
and a memory slave responds. If the master and the memory slave are modeled as independent
processes, we need a way to package up the read request and the memory response. We might
use structures something like this:

class request
{

addr_t address;
data_t data;
bus_op_t op;

};

class response
{

addr_t address;
data_t data;
bus_op_t op;
status_t status;

};

The request and response objects can be considered transactions, since these are the media
through which the bus master and memory communicate. When the bus master wants to read
from the memory, it sends a transaction to the memory slave. The memory slave sends back a
response.

Now the bus_read function used in the burst_read above can be implemented something like
this:

data_t bus_read(addr_t addr)
{

request req;
response rsp;

req.address = addr;
req.op = OP_READ:
bus.put(req);

rsp = bus.get();
return rsp.data;

}

Transaction Recording
Sometimes you want to make a detailed RTL design look like it was a TLM. You want to
observe its behavior at the transaction level. There are a number of reasons you might want to
do this:

• Gain a better understanding of the design by observing its activity at a high level of
abstraction instead of decoding all of the bit wiggles.

• Compare the operation of an RTL design with its TLM counterpart.

Introduction to TLM

Advanced Verification Methodology Cookbook, 2.0 67
July 24, 2006

• Capture function points as transactions for the purposes of counting them, that is,
calculating functional coverage.

SCV, the verification library for SystemC provides a transaction recording facility. Without
going into great depth on how it works, the essential idea is to mark the beginning and ending of
a transaction. When the locus of control reaches the beginning then a transaction is said to have
begun. When the locus of control reaches the end mark, the transaction concludes. Transaction
are recorded into streams which are roughly the equivalent of a waveform trace. Transactions
put into a stream are in time order, much the same way net changes are stored in time order to
form a waveform trace.

Here’s a basic example:

void thread()
{

scv_tr_stream stream(“stream”);
scv_tr_generator<data_t> tr_gen(“read”,stream”,“data”);

while(1)
{

wait(synch_event);
tr_gen.begin_transaction();
// ... do stuff
tr.gen.end_transaction();

}
}

Each time the loop iterates, a new transaction is recorded. At the top of the loop is a call to
begin_transaction(), which marks the beginning of a new transaction. At the bottom of the
loop is a call to end_transaction, which complements begin_transaction by ending the
transaction already begun. All of the activity between the call to begin_transaction() and
end_transaction() constitutes a transaction.

This is just gives a hint at what the SCV transaction recording facility can do. We just showed a
basic example to illustrate the notion of a transaction as a recorded entity. Using the SCV
facility, you can nest transactions and link together transactions that were created in separate
threads. See the SCV documentation for more details on advanced operations.

Advanced Verification Methodology Cookbook, 2.068

Introduction to TLM

July 24, 2006

Introduction to TLM
Transaction Level Modeling and Verification

Advanced Verification Methodology Cookbook, 2.0 69
July 24, 2006

Introduction to TLM

Transaction Level Modeling and Verification
Transaction level modeling and functional verification are not often discussed together. We’ll
show that applying transaction level modeling techniques to building testbenches for function
verification has a lot of advantages.

Any piece of code that runs in a simulator is a model. For our purposes we’ll discuss reference
models and implementation models. An implementation model is a model of a design that is
being prepared for fabrication. These days implementation models are usually synthesizeable
RTL code. A reference model is a model is a higher level representation of the implementation,
omitting much of the detail, but retaining the essential functionality.

Abstraction
A reference model is more abstract than an implementation model. Making an abstract model
means abstracting time, data, and function.

Abstract time. The time abstraction in a simulator refers to how often the entire design state is
consistent. Models that run in event driven simulators (e.g. logic simulators) use a discrete
notion of time, meaning events happen at specific time points. Events usually (although not
always) cause a process of some sort to be invoked.

The more events that occur in a simulation, the more processes need to be invoked, the slower
the overall simulation runs. Abstracting time means reducing the number of points where the
design must be consistent and therefore the total number of events and process activations that
must occur. For example, in an RTL model, every net must be consistent after every change. In
cycle accurate abstraction the design must be consistent only on the clock edges, eliminating all
the events that occur between clock edges. In a transaction-level model the design state must be
consistent at the end of each transaction, each of which may consume many clock cycles.

Abstract data. Data refers to the objects communicated between components. In RTL models
the data refers to individual bits that are passed via nets between components. In TLMs data is
in the form of transactions, heterogeneous structures that contain arbitrary collections of
elements.

Consider a packet in a communications device, for example. At the lowest level of detail the
packet contains start and stop bits, a header, error correction information, payload size, payload,
and a trailer. In an abstract model the payload and size may only be necessary, the other pieces
of data are not necessary for the calculations being performed.

Abstract function. The function of a model is the set of all things it must do at each event.
Abstracting function means reducing that set or replacing groups with simpler calculations. For
example, in an ALU you may choose to use the native multiplication operation (e.g. *) supplied
in your modeling language instead of coding the complete algorithm for a shift-and-add

Advanced Verification Methodology Cookbook, 2.070

Introduction to TLM
Transaction Level Modeling and Verification

July 24, 2006

multiplier. The latter may be part of the implementation, but at the higher level the details of the
shift-and-add algorithm are unimportant.

Specific ways of abstracting time, data, and function are called abstraction levels. RTL is an
abstraction level that has far less detail than gate level models or transistor level models. For the
purposes of functional verification RTL is the lowest level abstraction that we need to consider.
Since synthesizers can convert RTL to gates very effectively we don’t need to concern our
selves with lower levels of detail. Besides, anything lower gets into electrical issues that are
beyond the scope of design function.

Reference Models
Verification engineers and designers have been building reference models, or so called golden
models, for a long time in C or C++. To verify their design, they connect the golden model to
their DUT using some means to compare the output of the two. The reason they do this is
because reference models embody the design intent. They contain the essential functionality --
algorithms, data structures, and processes -- that make the device work without the
implementation details. Comparing the implementation with a reference is the essential role of
functional verification.

Reference models are at a higher level of abstraction than the implementation. There are a
number of reasons why this is the case. It must be possible to build the reference significantly
faster and at lower cost than the implementation. If it were at the same level of abstraction as the
DUT, it would be the design and there would be nothing to learn by comparing the DUT with
the reference. A reference model at a lower level of abstraction is fairly useless since you would
already have to have built an RTL model in order to get to gates or transistors. That leaves us
with transaction level for representing golden model. Transaction level means anything above
RTL, which could be cycle accurate, timed or untimed, using abstract data or bit-accurate
registers.

Using transaction-level modeling techniques is a good way to build reference models, one
which the AVM advocates. Transaction-level models are at a higher level of abstraction, so they
are fast to build and run fast. In addition using well-defined TLM interfaces and channels makes
it easier to build models that interoperate with other TLMs and which

The rest of this chapter provides an introduction to essential TLM concepts which serve as a
foundation for building AVM-based verification components.

Introduction to TLM
Put

Advanced Verification Methodology Cookbook, 2.0 71
July 24, 2006

Introduction to TLM

Put

Figure 4-2. TLM Put Configuration

Description
Block A puts a transaction to block B. Block A is a free running process with its own thread.
Block B is a slave, it does not have its own thread and operates only when invoked by block A.
A initiates transactions which B receives and processes.

Key Concepts
• A transaction is a chunk of data that represents some activity in the system. The data can

be anything, but it often contains a command to a component to perform an action or the
results of an action that’s already completed.

• A put configuration moves a transaction from an initiator to a target. The initiator calls
put() which invokes an implementation of put in the target. The data is transferred via
the argument to put().

• The put operation shown here is a blocking operation. The target B blocks which means
that when A issues the put it must wait until B completes the operation. B may return
immediately or it may consume time.

• A put operation does not necessarily involve time. The entire process is handled with
function calls which may not consume time.

• The example is what is commonly referred to as a producer/consumer pair. The initiator
on the left produces an object which is consumed by the target on the right.

A B

Advanced Verification Methodology Cookbook, 2.072

Introduction to TLM
Put

July 24, 2006

Figure 4-3. Control Flow Diagram for a Blocking put Operation

As the diagram above illustrates, a put involves two processes, a producer and a consumer. The
producer in our examples is a very simple one, it just generates a single random value. The put
operation sends the generated value to the consumer. The consumer blocks. Blocking means
that the caller waits until the called function completes. In a timed system, such as a hardware
simulator, the consumer may cause time to elapse. When the consumer completes and returns,
the producer will pick up where it left off, only time will have advanced.

put

return(value)

producer consumer

generate random value

print value

Introduction to TLM: Put Example

Advanced Verification Methodology Cookbook, 2.0 73
July 24, 2006

Introduction to TLM: Put Example

SystemVerilog Implementation
Let’s take a look at the producer first.

34 class producer;
35
36 put_if put_port;
37
38 task run;
39
40 int randval;
41
42 for(int i=0; i<10; i++)
43 begin
44 randval = $random %100;
45 $display(“producer: sending %4d”, randval);
46 put_port.put(randval);
47 end
48
49 endtask
50
51 endclass : producer
file: topics/04_tlm/01_put_svc/put.sv

Our producer produces 10 random integers in the range of 0 to 99. Each time it generates a new
random value, it calls chan.put() to send the value to the target.

The put_if class ties the producer and consumer together. It supplies the requirement that a
task named put with an integer argument must be provided by the consumer.

26 class put_if;
27 virtual task put(int val);
28 endtask
29 endclass : put_if

The target consists of an implementation of the put task. In our case, consuming a value means
simply displaying it to confirm that the value properly made its way from the producer.

56 class consumer extends put_if;
57 task put(int val);
58 $display(“consumer: receiving %4d”, val);
59 endtask : put
60 endclass : consumer
file: topics/04_tlm/01_put_svc/put.sv

The producer, which controls the whole operation, consists of a process which sends
transactions in the form of an integer to the consumer. To do this, the producer calls a function
in the consumer call put. The purpose of the put function is to move data from the scope of the
producer to the scope of the consumer. The producer supplies data to the put function in the
form of actual arguments. The put function operates in the scope of the consumer, so once
put() is called, the data in its arguments is moved into the scope of the consumer.

Advanced Verification Methodology Cookbook, 2.074

Introduction to TLM: Put Example

July 24, 2006

At first glance, this seems like a little sorcery — moving data from one scope to another just by
calling a function. It becomes clearer, when we look a little deeper, how the linkages are
formed. The top level model connects the producer to the consumer.

65 module top;
66
67 producer p;
68 consumer c;
69
70 initial begin
71
72 // instantiate producer and consumer
73 p = new;
74 c = new;
75
76 // connect producer and consumer
77 // through the put_if interface class
78 p.put_port = c;
79 p.run;
80
81 end
82
83 endmodule : top
file: topics/04_tlm/01_put_svc/put.sv

In its initial block, top creates instances of the producer and consumer by calling the new
operator. The linkage between the two is completed through the assignment

78 p.put_port = c;

The assignment is only the last step in the linkage. The first step is the interface class put_if. It
contains a definition of the put function that is used to communicate between the producer and
consumer. The definition is virtual, meaning that the function is not implemented in this class,
instead it must be implemented in a derived class. The second step is that the consumer is
derived from the put_if class. This creates the requirement that the consumer implement the
put function. The third step is the declaration of a port in the producer. The type of the port is
the type of the put_if class. Put_port is a handle to a put_if object. The last step, the
assignment, sets the value of the put_port handle to the consumer. Since consumer is derived
from put_if, the types match for assignment purposes. The producer now has a handle to the
put() interface of the consumer. The consumer may have lots of other members and methods
besides put(), but the producer has access only to put() because its handle is to the base class
of consumer.

Introduction to TLM: put Example

Advanced Verification Methodology Cookbook, 2.0 75
July 24, 2006

Introduction to TLM: put Example

SystemC Implementation
The SystemC producer is very similar to the SystemVerilog producer. Both have a loop which
produces 10 random integers between 0 and 99. The SystemC variant uses a thread
(SC_THREAD) in the producer. There are a couple of reasons for this organization. One is that
a method (SC_METHOD) requires a clock or some other signal to trigger it. We want our
producer to run freely without any outside triggering. Another reason is that the put() call may
block. That is, the consumer may cause time to elapse. Threads can be suspended and resumed,
methods cannot.

44 class producer : public sc_module
45 {
46 public:
47 producer(sc_module_name nm) :
48 sc_module(nm),
49 put_port(“put_port”)
50 {
51 SC_THREAD(run);
52 }
53 SC_HAS_PROCESS(producer);
54
55 sc_export<put_if> put_port;
56
57 void run()
58 {
59 int randval;
60
61 for(int i=0; i<10; i++)
62 {
63 randval = rand() % 100;
64 cout << “producer: putting “ << randval << endl;
65 put_port->put(randval);
66 }
67 }
68 };
file: topics/04_tlm/01_put_sc/put.cc

The consumer is also structured similarly to its SystemVerilog counterpart. The primary
component is an implantation of the put() function.

78 class consumer : public sc_module, public put_if
79 {
80 public:
81 consumer(sc_module_name nm) :
82 sc_module(nm)
83 {}
84
85 void put(int val)
86 {
87 cout << “consumer: receiving “ << val << endl;
88 }
89 };
file: topics/04_tlm/01_put_sc/put.cc

Advanced Verification Methodology Cookbook, 2.076

Introduction to TLM: put Example

July 24, 2006

Bolted on to the consumer is the put_if, a pure virtual class which defines the interface that
external modules can use to send items to be consumed.

28 class put_if : public sc_interface
29 {
30 public:
31 virtual void put(int) = 0;
32 };

The linkage between the producer and consumer, while conceptually identical, differs in the
mechanics between SystemC and SystemVerilog. Conceptually, the consumer provides a
function, put(), which is called by the producer. The producer passes an object to the consumer
by calling the put() function the consumer makes available. The consumer export is bound to
the consumer_if interface.

94 class top : public sc_module
95 {
96 public:
97 top(sc_module_name nm) :
98 sc_module(nm),
99 p(“p”),
100 c(“c”)
101 {
102 p.put_port(c);
103 }
104
105 producer p;
106 consumer c;
107 };
file: topics/04_tlm/01_put_sc/put.cc

The top module connects the producer directly to the consumer without going through a
channel. Like SystemVerilog, the consumer exports its implementation of put() via an object
called, not surprisingly, an export. The producer establishes the requirement to import a put()
function through a port, in this case called out. The top level module connects the port on the
producer to the export on the consumer, binding the producer’s put() call with the consumer’s
put() implementation.

Although we don’t use an explicit channel in this example, SystemC makes heavy use of
channels for many applications. We’ll explore the how and why of channels later this section on
TLM.

Introduction to TLM
Get

Advanced Verification Methodology Cookbook, 2.0 77
July 24, 2006

Introduction to TLM

Get

Figure 4-4. TLM get Configuration

Description
The get configuration is the complement of the put configuration. Like the put configuration,
the get configuration has two blocks, an initiator and a target. The initiator gets a transaction
from the target. In this case, the initiator is the consumer and the target is the producer. The
initiator/consumer requests the target/producer to produce new values.

Key Concepts
• A get configuration moves a transaction from a target to an initiator.

• Like the put configuration, the get initiator interface is a requires/provides connection.

• The get operation shown here is a blocking operation. The target B blocks, which means
that when A issues the get, it must wait until B completes the operation. B may return
immediately, or it may consume time.

A B

Advanced Verification Methodology Cookbook, 2.078

Introduction to TLM
Get

July 24, 2006

Figure 4-5. Control Flow Diagram for a Blocking get Operation

In a get operation, the consumer is in charge; it tells the producer to produce a new object.
Contrast this to the put operation where the producer is in charge. The get operation is blocking,
meaning the producer may cause time to elapse in the process of producing a new value. The
producer sends its value to the consumer via the return value of the get() function.

return(value)

producer consumer

generate random value

print value

get

Introduction to TLM: get Example

Advanced Verification Methodology Cookbook, 2.0 79
July 24, 2006

Introduction to TLM: get Example

SystemVerilog Implementation
In the get operation, we start with the consumer since it contains the thread that drives the
operation of this example. The loop calls chan.get() 10 times. Each call to chan.get requests
the producer to generate a new value and send it back.

50 class consumer;
51
52 get_if get_port;
53
54 task run;
55 int i;
56 int randval;
57 for(i=0; i<10; i++)
58 begin
59 randval = get_port.get();
60 $display(“consumer: receiving %4d”, randval);
61 end
62 endtask
63 endclass : consumer
file: topics/04_tlm/02_get_svc/get.sv

The producer implements the get function. Each time it’s called it generates a random integer
between 0 and 99 returns the value to the caller.

36 class producer extends get_if;
37
38 function int get();
39 int randval;
40 randval = $random % 100;
41 $display(“producer: sending %4d”, randval);
42 return randval;
43 endfunction
44
45 endclass : producer
file: topics/04_tlm/02_get_svc/get.sv

The interface that connects the producer to the consumer works identically to the put example.
The get_if class has a virtual function which establishes the requirement that the producer
implement the function get().

28 class get_if;
29 virtual function int get();
30 endfunction
31 endclass : get_if
file: topics/04_tlm/02_get_svc/get.sv

The linkage between the producer and consumer is also similar to the put configuration.

68 module top;
69
70 producer p;

Advanced Verification Methodology Cookbook, 2.080

Introduction to TLM: get Example

July 24, 2006

71 consumer c;
72
73 initial begin
74 // instantiate producer and consumer
75 p = new;
76 c = new;
77
78 // connect producer and consumer through the get_if
79 // interface class
80 c.get_port = p;
81 c.run;
82 end
83 endmodule : top
file: topics/04_tlm/02_get_svc/get.sv

Introduction to TLM: get Example

Advanced Verification Methodology Cookbook, 2.0 81
July 24, 2006

Introduction to TLM: get Example

SystemC Implementation
The SystemC consumer is structured like the SystemVerilog consumer. It contains a thread
which runs a loop which gets 10 values from the producer.

52 class consumer : public sc_module
53 {
54 public:
55 consumer(sc_module_name nm) :
56 sc_module(nm),
57 get_port(“get_port”)
58 {
59 SC_THREAD(run);
60 }
61 SC_HAS_PROCESS(consumer);
62
63 sc_export<get_if> get_port;
64
65 void run()
66 {
67 for(int i=0; i<10; i++)
68 {
69 int val = get_port->get();
70 cout << “consumer: receiving “ << val << endl;
71 }
72 }
73 };
file: topics/04_tlm/02_get_sc/get.cc

The producer is structured like the SystemVerilog producer. It contains an implementation of
the get() function. Each time get() is called, it generates a random value between 0 and 99
and returns it to the caller (the consumer).

34 class producer : public sc_module, public get_if
35 {
36 public:
37 producer(sc_module_name nm) :
38 sc_module(nm)
39 {}
40
41 int get()
42 {
43 int randval = rand() % 100;
44 cout << “producer: sending “ << randval << endl;
45 return randval;
46 }
47 };
file: topics/04_tlm/02_get_sc/get.cc

The producer makes the get() function available externally through the producer_if
interface.

25 class get_if : public sc_interface

Advanced Verification Methodology Cookbook, 2.082

Introduction to TLM: get Example

July 24, 2006

26 {
27 public:
28 virtual int get() = 0;
29 };
file: topics/04_tlm/02_get_sc/get.cc

The top module binds the producer to the consumer. It connects the consumer export, called
get_port with the producer interface get_if.

78 class top : public sc_module
79 {
80 public:
81 top(sc_module_name nm) :
82 sc_module(nm),
83 p(“p”),
84 c(“c”)
85 {
86 c.get_port(p);
87 }
88
89 producer p;
90 consumer c;
91 };
file: topics/04_tlm/02_get_sc/get.cc

Introduction to TLM
Request/Response

Advanced Verification Methodology Cookbook, 2.0 83
July 24, 2006

Introduction to TLMIntroduction to TLM

Request/Response

Figure 4-6. TLM request/response Configuration

Description
A request/response configuration is essentially a combination of a get and a put configuration.
Block A, which operates in its own thread, sends a request to B. B (a slave), accepts the request
and then issues a response. A blocks until B completes its work and returns a response.

Key Concepts
• A request/response configuration moves a request transaction from the initiator to the

target and a response transaction from the target back to the initiator.

• A put sends a value to a target via a function argument. A get recieves a value back to
the initiator via the function return value. A request/response uses a transport function
which does both things.

put(val)
val = get()
response = transport(request)

• The terms producer and consumer are used to describe the processes involved in a
unidirectional communication. In a bi-directional configuration both processes produce
values and both consume values. So, the producer/consumer terminology no longer
works. The processes involved in a request/response configuration are called master and
slave. A master initiates communication and a slave responds.

• The request/response operation is blocking. The master blocks until the slave returns a
request. The slave may consume simulation time.

A B

Advanced Verification Methodology Cookbook, 2.084

Introduction to TLM
Request/Response

July 24, 2006

Figure 4-7. Control Flow Transport Operation

Like put() and get(), transport() is a blocking function. The master blocks until the
transport function completes and returns a response. The slave may consume simulation time.

transport(request)

return(response)

master slave

generate random
request

print request
compute response

print response

Introduction to TLM: request/response Example

Advanced Verification Methodology Cookbook, 2.0 85
July 24, 2006

Introduction to TLM: request/response Example

SystemVerilog Implementation
Not surprisingly, the implementation of the request/response configuration is a combination of
the put and get configuration. It sends a request to the slave through the transport_if. Instead
of a producer, we have a master which drives the whole operation.

31 class master;
32
33 transport_if port;
34
35 task run;
36
37 int request;
38 int response;
39
40 for(int i=0; i<10; i++)
41 begin
42 request = $random % 100;
43 $display(“master: sending request %4d”, request);
44 response = port.transport(request);
45 $display(“master: receiving response %4d”, response);
46 end
47
48 endtask
49 endclass : master
file: topics/04_tlm/03_req_rsp_svc/req_rsp.sv

The transport() call sends a request to the slave and receives a response. The slave gets the
request, formulates a response, and sends it back. The response in our examples is a trivial sign
change of the request.

54 class slave extends transport_if;
55
56 function int transport(int request);
57 int response;
58 $display(“slave: receiving request %4d”, request);
59 response = -request;
60 $display(“slave: sending response %4d”, response);
61 return response;
62 endfunction
63
64 endclass : slave
file: topics/04_tlm/03_req_rsp_svc/req_rsp.sv

The connecting channel should look familiar. It specifies that the master requires (imports) an
implementation of the transport() function and the slave provides (exports) the function.

23 class transport_if;
24 virtual function int transport(int request);
25 endfunction
26 endclass : transport_if
file: topics/04_tlm/03_req_rsp_svc/req_rsp.sv

Advanced Verification Methodology Cookbook, 2.086

Introduction to TLM: request/response Example

July 24, 2006

Finally, the top level module connects all the pieces together.

69 module top;
70
71 master m;
72 slave s;
73
74 initial begin
75 // instantiate the master and slave
76 m = new;
77 s = new;
78
79 // connect the master and slave through
80 // the port interface
81 m.port = s;
82 m.run;
83 end
84
85 endmodule : top
file: topics/04_tlm/03_req_rsp_svc/req_rsp.sv

Introduction to TLM: request/response Example

Advanced Verification Methodology Cookbook, 2.0 87
July 24, 2006

Introduction to TLM: request/response Example

SystemC Implementation
The master in our request/response configuration generates a sequence of 10 requests. Each
request is a random integer between 0 and 99.

37 class master : public sc_module
38 {
39 public:
40 master(sc_module_name nm) :
41 sc_module(nm),
42 port(“port”)
43 {
44 SC_THREAD(run);
45 }
46 SC_HAS_PROCESS(master);
47
48 sc_export<transport_if> port;
49
50 void run()
51 {
52 int request;
53 int response;
54
55 for(int i=0; i<10; i++)
56 {
57 request = rand() % 100;
58 cout << “master: requesting “ << request << endl;
59 response = port->transport(request);
60 cout << “master: receiving response “ << response << endl;
61 }
62 }
63 };
file: topics/04_tlm/03_req_rsp_sc/req_rsp.cc

The slave receives the request, computes a response, and returns the response back to the
master.

68 class slave : public sc_module, public transport_if
69 {
70 public:
71 slave(sc_module_name nm) :
72 sc_module(nm)
73 {}
74
75 int transport(int request)
76 {
77 cout << “slave: receiving request “ << request << endl;
78 int response = -request;
79 cout << “slave: responding with “ << response << endl;
80 return response;
81 }
82 };
file: topics/04_tlm/03_req_rsp_sc/req_rsp.cc

Advanced Verification Methodology Cookbook, 2.088

Introduction to TLM: request/response Example

July 24, 2006

The pure virtual class transport_if provides the interface that the master uses to bind to the
slave.

28 class transport_if : public sc_interface
29 {
30 public:
31 virtual int transport(int) = 0;
32 };
file: topics/04_tlm/03_req_rsp_sc/req_rsp.cc

The top level module connects the master to the slave.

87 class top : public sc_module
88 {
89 public:
90 top(sc_module_name nm) :
91 sc_module(nm),
92 m(“m”),
93 s(“s”)
94 {
95 m.port(s);
96 }
97
98 master m;
99 slave s;
100 };
file: topics/04_tlm/03_req_rsp_sc/req_rsp.cc

Introduction to TLM
FIFO

Advanced Verification Methodology Cookbook, 2.0 89
July 24, 2006

Introduction to TLM

FIFO

Figure 4-8. TLM FIFO Configuration

Description
Block A and block B each operate in separate threads. The initiator A sends transactions to
target B. However, instead of sending the transactions directly to the target, the initiator puts
them into a fifo and the target gets them from the fifo. Inserting a fifo between initiator and
target allows each of them to operate independently.

Key Concepts
• A fifo is inserted between the initiator and the target. The fifo throttles communication

between the two processes. The initiator puts transactions into the fifo and the target gets
transactions from the fifo.

• A and B both still use blocking operations, but the fifo eliminates the need for either one
to wait for the other. Blocking is in terms of the fifo. If the fifo is full when A does a put,
then A will block until there is room in the fifo for another transaction. Similarly, if the
fifo is empty when B does a get, then B blocks until a transaction appears in the fifo.

• Using a fifo between communicating components enables those components to be built
and tested independently and for them to operate independently. Each component only
needs to know the kind of transaction object that it sends or receives, it doesn’t have to
know with which specific component it will be communicating.

A B

FIFO

Advanced Verification Methodology Cookbook, 2.090

Introduction to TLM
FIFO

July 24, 2006

Figure 4-9. Control Flow Diagram for Producer/Consumer with a FIFO

The producer uses the same put interface that we discussed in the first section of this chapter.
The producer calls put(). Instead of sending the transaction directly to the consumer, instead it
deposits the transaction into a fifo. Sometime later, the consumer calls get to retrieve the
transaction from the fifo. The fifo isolates the producer from the consumer so that they are no
longer directly dependent on each other.

put(val)

get()

producer consumerfifo

return(val)

Introduction to TLM: FIFO Example

Advanced Verification Methodology Cookbook, 2.0 91
July 24, 2006

Introduction to TLM: FIFO Example

SystemVerilog Implementation
The implementation both the producer and consumer are is straightforward. The producer
performs a sequence of puts, depositing an item into the fifo each time. The consumer retrieves
things from the fifo by calling get.

25 class producer extends avm_verification_component;
26
27 tlm_blocking_put_if#(int) put_port;
28
29 task run;
30
31 int randval;
32
33 for(int i = 0; i < 10; i++)
34 begin
35 randval = $random % 100;
36 $display(“producer: sending %4d”, randval);
37 put_port.put(randval);
38 end
39 endtask
40
41 endclass : producer
file: topics/04_tlm/04_fifo_svc/fifo.sv

In the earlier producer and consumer examples, we called chan.put() and chan.get(). In this
example, we call fifo.put() and fifo.get(). The fifo is the communication channel between
the producer and consumer. The put and get are operations on the fifo not on the sending or
receiving component.

46 class consumer extends avm_verification_component;
47
48 tlm_blocking_get_if#(int) get_port;
49
50 task run;
51
52 int val;
53
54 forever
55 begin
56 get_port.get(val);
57 $display(“consumer: receiving %4d”, val);
58 end
59
60 endtask
61
62 endclass : consumer
file: topics/04_tlm/04_fifo_svc/fifo.sv

tlm_fifo(#int) is a reference to a parameterized class which resides in the AVM utility library.
The direction of the port is specified as input in both the producer and the consumer. The reason

Advanced Verification Methodology Cookbook, 2.092

Introduction to TLM: FIFO Example

July 24, 2006

is that the reference to the class object is not known until run time. The input specifier allows
the reference to assume new values at run time.

The top level module ties together the producer and consumer, connecting them with the fifo
channel in much the same way two RTL components would be connected with a net.

The new operator is called to create an instance of the fifo. The variable fifo is a handle to the
newly generated tlm_fifo. That handle is passed to the port lists of the producer and consumer.
Since the ports on both these components are input ports, the components will receive a handle
to the newly minted fifo channel.

67 module top;
68
69 producer p;
70 consumer c;
71 tlm_fifo#(int) f;
72
73 initial
74 begin
75 // instantiate the producer, consumer,
76 // and the fifo channel
77 p = new;
78 c = new;
79 f = new;
80
81 // connect the producer and consumer
82 // through the fifo channel
83 p.put_port = f.blocking_put_export;
84 c.get_port = f.blocking_get_export;
85
86 // kick off the run processes in each
87 // verification component
88 avm_verification_component::run_all();
89 end
90
91 endmodule : top
file: topics/04_tlm/04_fifo_svc/fifo.sv

Introduction to TLM: FIFO Example

Advanced Verification Methodology Cookbook, 2.0 93
July 24, 2006

Introduction to TLM: FIFO Example

SystemC Implementation
The producer uses a port to connect to the fifo channel. The port establishes a requirement that
must be satisfied by the channel to which it’s connected. The requirement is embodied in the
interface we use to specify the port type. In our case, the interface is tlm_put_if<int>. The
type in the angle brackets, int, is the type of the object sent out by the producer.

30 class producer : public sc_module
31 {
32 public:
33 producer(sc_module_name nm) :
34 sc_module(nm),
35 put_port(“put_port”)
36 {
37 SC_THREAD(run);
38 }
39 SC_HAS_PROCESS(producer);
40
41 sc_port<tlm_put_if<int> > put_port;
42
43 void run()
44 {
45 int randval;
46
47 for(int i = 0; i < 10; i++)
48 {
49 randval = rand() % 100;
50 cout << “producer: sending “ << randval << endl;
51 put_port->put(randval);
52 }
53 }
54 };
file: topics/04_tlm/04_fifo_sc/fifo.cc

The consumer also has a port to connect to the fifo channel. The interface the consumer port
uses is tlm_get_if<int>.

59 class consumer : public sc_module
60 {
61 public:
62 consumer(sc_module_name nm) :
63 sc_module(nm)
64 {
65 SC_THREAD(run);
66 }
67 SC_HAS_PROCESS(consumer);
68
69 sc_port<tlm_get_if<int> > get_port;
70
71 void run()
72 {
73 int val;
74 while(1)

Advanced Verification Methodology Cookbook, 2.094

Introduction to TLM: FIFO Example

July 24, 2006

75 {
76 val = get_port->get();
77 cout << “consumer: receiving “ << val << endl;
78 }
79 }
80 };
file: topics/04_tlm/04_fifo_sc/fifo.cc

The top module contains the fifo through which the producer and consumer communicate. The
fifo is a templated object whose template parameter is the type of the object that the fifo will
store. The fifo is connected to the output port of the producer and the input port of the consumer.
The compiler does the type checking to make sure that the ports connected to the fifo match the
data type of type fifo.

85 class top : public sc_module
86 {
87 public:
88 top(sc_module_name nm) :
89 sc_module(nm),
90 p(“p”),
91 c(“c”)
92 {
93 p.put_port(fifo);
94 c.get_port(fifo);
95 }
96
97 producer p;
98 consumer c;
99
100 private:
101 tlm_fifo<int> fifo;
102 };
file: topics/04_tlm/04_fifo_sc/fifo.cc

Introduction to TLM
Bi-directional Communication

Advanced Verification Methodology Cookbook, 2.0 95
July 24, 2006

Introduction to TLM

Bi-directional Communication

Figure 4-10. Bi-directional Communication

Description
Just like with unidirectional communication, it’s often desirable to have bi-directional
communication in which the communicating components are independent. This configuration
illustrates independent requests and responses. The initiator A sends a request to B, and B sends
back a response. Unlike the request/response configuration, A does not block until the request is
returned.

Key Concepts
• A pair of fifos is inserted between two communicating components to throttle both the

stream of requests and the stream of responses.

• As with the fifo configuration, A and B both still use blocking operations but the
blocking is in terms of the fifo, not the other component. When a request is sent, if the
fifo is full then A will block until there is space in the fifo for another transaction.
Similarly, B will block when getting a request only if the request queue is empty. The
communication of the response from target B back to initiator A operates in the same
manner.

• Using fifos between components for bi-directional communication eliminates the need
for them to be aware of each other. They only need to be concerned with sending and
receiving requests and responses.

• Since the requests and responses are sent independently the issues arises about how to
match a particular response with a particular request. Requirements for whether or not
this is necessary and how it should be done, if it is, are entirely application dependent.

A bi-directional communication interface requires four connections, two for the master and two
for the slave.

A B

FIFOs

Advanced Verification Methodology Cookbook, 2.096

Introduction to TLM
Bi-directional Communication

July 24, 2006

Figure 4-11. Sequence of Operations for Bi-directional Communication

The order of events in a bi-directional communication proceeds as follows: The master initiates
communication by sending a request to the slave using put(). The slave retrieves the request
using get(). The slave processes the request and formulates a response. When the response is
ready the slave sends it back to the master also using put(). Finally, the response is retrieved by
the master using get().

MASTER SLAVE

put(req) req = get()

rsp = get() put(rsp)

Introduction to TLM: Bi-directional Example

Advanced Verification Methodology Cookbook, 2.0 97
July 24, 2006

Introduction to TLM: Bi-directional Example

SystemVerilog Implementation
The environment class contains the channel and makes the four connections that enable bi-
directional communication.

104 class bidir_env extends avm_env;
105
106 master m;
107 slave s;
108 tlm_req_rsp_channel #(int) req_rsp;
109
110 function new;
111 m = new(“master”);
112 s = new(“slave”);
113 req_rsp = new(“req_rsp_channel”);
114 endfunction
115
116 function void connect;
117 m.req_port = req_rsp.blocking_put_request_export;
118 m.rsp_port = req_rsp.blocking_get_response_export;
119 s.req_port = req_rsp.blocking_get_request_export;
120 s.rsp_port = req_rsp.blocking_put_response_export;
121 endfunction
122
123 task execute;
124 #10;
125 endtask
126
127 endclass // bidir_env

The request/response channel is instantiated in the new() function. The connect() function
connects the request and response ports on both the master and slave to the request/response
channel.

The master has two ports, req_port and rsp_port. Both are handles to interfaces. The values
of the handles are assigned by the connect() function in the environment class.

24 class master extends avm_verification_component;
25
26 tlm_blocking_put_if #(int) req_port;
27 tlm_blocking_get_if #(int) rsp_port;
28
29 function new(string name , avm_named_component parent = null);
30 super.new(name , parent);
31 endfunction // new
32
33 task run;
34 fork
35 request_process;
36 response_process;
37 join
38 endtask
39

Advanced Verification Methodology Cookbook, 2.098

Introduction to TLM: Bi-directional Example

July 24, 2006

40 task request_process;
41
42 string request_str;
43
44 for(int i = 0; i < 10; i++) begin
45 $sformat(request_str , “%d” , i);
46 avm_report_message(“sending request” , request_str);
47 req_port.put(i);
48 end
49
50 endtask // request_process
51
52 task response_process;
53
54 int response;
55 string response_str;
56
57 forever begin
58 rsp_port.get(response);
59 $sformat(response_str , “%d” , response);
60 avm_report_message(“recieving response” ,
response_str);
61 end
62 endtask
63
64 endclass // master

The run task forks two processes, one to send requests and the other to handle responses. In our
simple example requests and responses are integers. The organization would be the same if
requests and responses were more complex packets. The request process sends a stream of
integer requests. The response handler retrieves the response and prints it.

The slave is organized as a single process that retrieves requests, processes them to formulate a
response, then sends the response back to the master.

70 class slave extends avm_verification_component;
71
72 tlm_blocking_get_if #(int) req_port;
73 tlm_blocking_put_if #(int) rsp_port;
74
75 function new(string name , avm_named_component parent = null);
76 super.new(name , parent);
77 endfunction // new
78
79 task run;
80
81 int request , response;
82 string request_str , response_str;
83
84 forever begin
85 req_port.get(request);
86 $sformat(request_str , “%d” , request);
87 avm_report_message(“recieving request” , request_str
);
88
89 response = request;

Introduction to TLM: Bi-directional Example

Advanced Verification Methodology Cookbook, 2.0 99
July 24, 2006

90
91 $sformat(response_str , “%d” , response);
92 avm_report_message(“sending response” , response_str);
93
94 rsp_port.put(response);
95
96 end // forever begin
97 endtask
98
99 endclass

Advanced Verification Methodology Cookbook, 2.0100

Introduction to TLM: Bi-directional Example

July 24, 2006

Introduction to TLM: Bi-directional Example

Advanced Verification Methodology Cookbook, 2.0 101
July 24, 2006

Introduction to TLM: Bi-directional Example

SystemC Implementation
Our master has two processes: one for sending requests, and the other for asynchronously
receiving responses. The request processes looks quite similar to our unidirectional producer
from earlier examples:

46 void request_process()
47 {
48 int request;
49
50 for(int i=0; i<10; i++)
51 {
52 request = i;
53 cout << “master: sending request “ << request << endl;
54 req_port->put(request);
55 wait(SC_ZERO_TIME);
56 }
57 }
file: topics/04_tlm/05_bidir_sc/bidir.cc

The response process uses a blocking get operation to retrieve responses. Since it blocks, it
will wait until a response appears before doing anything.

59 void response_process()
60 {
61 int response;
62
63 while(1)
64 {
65 response = rsp_port->get();
66 cout << “master: receiving response “ << response << endl;
67 wait (SC_ZERO_TIME);
68 }
69 }
file: topics/04_tlm/05_bidir_sc/bidir.cc

The slave has only a single process which accepts requests and returns responses.

90 void run()
91 {
92 int request;
93 int response;
94
95 while(1)
96 {
97 request = req_port->get();
98 cout << “slave: receiving request “ << request << endl;
99 response = request;
100 cout << “slave: sending response “ << response << endl;
101 rsp_port->put(response);
102 wait(SC_ZERO_TIME);
103 }
104 }

Advanced Verification Methodology Cookbook, 2.0102

Introduction to TLM: Bi-directional Example

July 24, 2006

file: topics/04_tlm/05_bidir_sc/bidir.cc

The top module shows how everything is connected together. The req_rsp_channle<int> has
two fifos inside of it, a request fifo and a response fifo. The master puts things into the request
fifo and gets things from the response fifo. The slave does the opposite, it gets requests and puts
responses.

110 class top : public sc_module
111 {
112 public:
113 top(sc_module_name nm) :
114 sc_module(nm),
115 m(“m”),
116 s(“s”),
117 req_rsp(“req_rsp”)
118 {
119 m.req_port(req_rsp.put_request_export);
120 m.rsp_port(req_rsp.get_response_export);
121 s.req_port(req_rsp.get_request_export);
122 s.rsp_port(req_rsp.put_response_export);
123 }
124
125 master m;
126 slave s;
127
128 private:
129 tlm_req_rsp_channel<int, int> req_rsp;
130 };
file: topics/04_tlm/05_bidir_sc/bidir.cc

We could simply use two fifos, one for requests and one for responses. The req_rsp_channel
is a convenience channel which pairs two fifos, and presents the proper request and response
interfaces. It helps to prevent silly mistakes like connecting the slave so it performs gets from
the response fifo and puts to the request fifo (which is backwards).

Introduction to TLM
Transaction Level Bus

Advanced Verification Methodology Cookbook, 2.0 103
July 24, 2006

Introduction to TLM

Transaction Level Bus

Figure 4-12. Transaction Bus with Four Masters/Slaves

Description
Now it’s time to take what we’ve learned about uni-directional and bi-directional transaction
level communication and put it to use. This example is a transaction level bus with two masters
and two slaves. The loop_master is both a master and a slave. It generates transactions in its
own address space. The mem_master generates memory reads and writes into and out of the two
memory slaves. Although this simple bus model is a far cry from a real system, it’s much more
realistic than those we’ve shown so far.

The channel is a very simple bus model. It contains a memory map that maps addresses to
specific devices connected to the bus. It arbitrates amongst the requests using a round-robin
arbitration scheme. It continuously polls the requests fifos in some order. When a request
appears it passes it on to the device which will service it and then moves on to the next request
fifo.

Key Concepts
• Independently operating devices communicate with each other through a bus.

• All communication is done at the transaction level.

• The same bi-directional interfaces and channels which were discussed in the previous
example are used here. Instead of two devices communicating point-to-point we have a
number of devices communicating through a bus.

mem_master channel
w

ith arbiter

mem_slave

mem_slaveloop_master

Advanced Verification Methodology Cookbook, 2.0104

Introduction to TLM
Transaction Level Bus

July 24, 2006

Introduction to TLM: Transaction Level Bus Example

Advanced Verification Methodology Cookbook, 2.0 105
July 24, 2006

Introduction to TLM: Transaction Level Bus Example

SystemC Implementation
The model consists of a bus and a set of masters/slaves. The bus owns the address map, which it
builds by acquiring address map entries from each master/slave. The masters have threads
which drive the system operation. When the last master thread terminates the entire system
terminates.

Masters and Slaves
Each of the devices connected to the bus is structured the same. This is accomplished by
deriving them all from the same base class.

38 class master_slave_base : public addr_config_if
39 {
40 public:
41 master_slave_base();
42
43 sc_port<tlm_master_if<request,response> > master_port;
44 sc_port<tlm_slave_if<request,response> > slave_port;
45
46 addr_map_entry request_addr_space() { return entry; }
47 void set_addr_space(bus_addr_t low, unsigned size);
48
49 private:
50 virtual void master_thread() = 0;
51 virtual void slave_thread() = 0;
52
53 protected:
54 addr_map_entry entry;
55
56 };
file: topics/04_tlm/06_tlm_bus_sc/ms.h
file: topics/04_tlm/06_tlm_bus_sc/ms.h

The master_slave_base class provides all the skeletal pieces needed for any master or slave
connected to our bus. It has a master port and a slave port. It also specifies two virtual functions,
master_thread and slave_thread. Finally, it has an address map entry.

The master and slave ports are defined in terms of request and response objects. The
tlm_req_rsp_channel, which exports the tlm_master_if and tlm_slave_if, consists of two
fifos, one for requests and one for responses. The master port is connected to the channel so that
it puts requests and gets responses. The slave port is connected in the opposite configuration, it
gets requests and puts responses. There are two req_rsp_channels for each master/slave,
which we’ll see in the bus model. Any particular device can operate as a master, sending
requests and retrieving responses, or it can operate as a slave, receiving requests, fulfilling the
request, and returning a response. Or, a single device can operate in both modes.

The loopback master is a device whose sole purpose is to generate some traffic on the bus (and
to demonstrate the construction of masters and slaves). The master thread consists of a loop

Advanced Verification Methodology Cookbook, 2.0106

Introduction to TLM: Transaction Level Bus Example

July 24, 2006

which sends requests into its own address space and then waiting for a response. Since the
request it sends is to its own address space it will be serviced by the same device. In other
words, it sends requests to itself.

28 void
29 loopback::master_thread()
30 {
31 addr_map_entry entry = request_addr_space();
32 bus_addr_t low = entry.low_addr();
33 unsigned size = entry.size();
34
35 request req;
36 response rsp;
37
38 for(int i = 0; i < 256; i++)
39 {
40 bus_addr_t target_addr = (rand() % size) + low;
41 req.addr = target_addr & bus_addr_mask;
42 req.data = 0xffffL;
43 req.op = OP_READ;
44
45 cout << “loop master: “ << name() << “: “;
46 cout << “sending : “ << req << endl;
47 master_port->put(req);
48
49 // wait for response
50 rsp = master_port->get();
51 cout << “loop master: “ << name() << “: “;
52 cout << “receiving: “ << rsp << endl;
53 }
54 }
file: topics/04_tlm/06_tlm_bus_sc/loopback.cc
file: topics/04_tlm/06_tlm_bus_sc/loopback.cc

The slave thread works in a complementary fashion to the master thread. It waits for requests,
formulates a response, which in this case is a trivial copy of the request members to the
response, and sends the response back.

59 void
60 loopback::slave_thread()
61 {
62 request req;
63 response rsp;
64
65 while(1)
66 {
67 // get request
68 req = slave_port->get();
69 cout << “loop slave : “ << name() << “: “;
70 cout << “receiving: “ << req << endl;
71
72 // formulate response
73 rsp.addr = req.addr & bus_addr_mask;
74 rsp.data = req.data & data_mask;
75 rsp.op = req.op;
76 rsp.status = STATUS_SUCCESS;

Introduction to TLM: Transaction Level Bus Example

Advanced Verification Methodology Cookbook, 2.0 107
July 24, 2006

77 cout << “loop slave : “ << name() << “: “;
78 cout << “sending : “ << rsp << endl;
79 slave_port->put(rsp);
80 }
81 }
file: topics/04_tlm/06_tlm_bus_sc/loopback.cc
file: topics/04_tlm/06_tlm_bus_sc/loopback.cc

Notice that in the course of sending and receiving a loopback transaction, all four parts of the
interfaces are exercised:

1. Master sends request. It puts a request in the master_if request fifo.

2. Slave receives the request. It gets a request from the slave_if request fifo.

3. Slave sends a response. It puts a response in the slave_if response fifo.

4. Master receives the response. It gets a response from the master_if response fifo.

The mem_master has only one thread, a master_thread. The declaration for the module satisfies
the requirement of the virtual function slave_thread() by providing an empty function.

The master executes three tests. The first test writes a sequence of randomly generated data
values to the mem_slave(s). The second test reads them back. The third test duplicates one half
of the mem_slave memory space into the other half.

The write test generates a sequence of bus write transactions.

36 req.op = OP_WRITE;
37 for(unsigned idx = 0; idx < 128; idx++)
38 {
39 req.addr = (start_addr + idx) & bus_addr_mask;
40 req.data = rand() & data_mask;
41
42 cout << “mem master : “ << name() << “: “;
43 cout << “sending : “ << req << endl;
44 master_port->put(req);
45
46 rsp = master_port->get();
47 cout << “mem master : “ << name() << “: “;
48 cout << “receiving: “ << rsp << endl;
49 }
file: topics/04_tlm/06_tlm_bus_sc/mem_master.cc
file: topics/04_tlm/06_tlm_bus_sc/mem_master.cc

The read test generates a sequence of bus read transactions.

52 req.op = OP_READ;
53 req.data = 0L;
54 for(unsigned idx = 0; idx < 128; idx++)
55 {
56 req.addr = (start_addr + idx) & bus_addr_mask;
57 master_port->put(req);
58
59 rsp = master_port->get();

Advanced Verification Methodology Cookbook, 2.0108

Introduction to TLM: Transaction Level Bus Example

July 24, 2006

60 }
file: topics/04_tlm/06_tlm_bus_sc/mem_master.cc
file: topics/04_tlm/06_tlm_bus_sc/mem_master.cc

The copy test splits the address space in half. It reads a byte in the lower half of the space and
then writes it to the corresponding location in the upper half of the space.

63 for(unsigned idx = 0; idx < 64; idx++)
64 {
65 req.op = OP_READ;
66 req.addr = (start_addr + idx) & bus_addr_mask;
67 req.data = rand() & data_mask;
68
69 cout << “mem master : “ << name() << “: “;
70 cout << “sending : “ << req << endl;
71 master_port->put(req);
72
73 rsp = master_port->get();
74 cout << “mem master : “ << name() << “: “;
75 cout << “receiving: “ << rsp << endl;
76
77 req.op = OP_WRITE;
78 req.addr = (start_addr + idx + 64) & bus_addr_mask;
79 req.data = rsp.data & data_mask;
80
81 cout << “mem master : “ << name() << “: “;
82 cout << “sending : “ << req << endl;
83 master_port->put(req);
84
85 rsp = master_port->get();
86 cout << “mem master : “ << name() << “: “;
87 cout << “receiving: “ << rsp << endl;
88
89 }
file: topics/04_tlm/06_tlm_bus_sc/mem_master.cc
file: topics/04_tlm/06_tlm_bus_sc/mem_master.cc

The mem_slave is a memory device. It accepts read and write requests and responds with
success status information. For reads it also responds with a data word from the memory.

25 void
26 mem_slave::slave_thread()
27 {
28 request req;
29 response rsp;
30
31 bus_addr_t addr;
32
33 while(1)
34 {
35 // get request
36 req = slave_port->get();
37 cout << “mem slave : “ << name() << “: “;
38 cout << “receiving: “ << req << endl;
39
40 // adjust address to local memory space

Introduction to TLM: Transaction Level Bus Example

Advanced Verification Methodology Cookbook, 2.0 109
July 24, 2006

41 addr = req.addr - entry.low_addr();
42
43 switch(req.op)
44 {
45 case OP_READ:
46 rsp.op = req.op;
47 rsp.addr = req.addr;
48 rsp.data = memory.read(addr);
49 rsp.status = STATUS_SUCCESS;
50 break;
51
52 case OP_WRITE:
53 rsp.op = req.op;
54 rsp.addr = req.addr;
55 rsp.data = req.data;
56 memory.write(addr, req.data);
57 rsp.status = STATUS_SUCCESS;
58 break;
59 };
60
61 cout << “mem slave : “ << name() << “: “;
62 cout << “sending : “ << rsp << endl;
63 slave_port->put(rsp);
64 }
65 }
file: topics/04_tlm/06_tlm_bus_sc/mem_slave.cc

The body of the memory slave is a loop which continually processes requests. The loop is, in
essence, a mini-command interpreter, looking at the contents of the request object and
processing appropriately. The slave has an object called memory which is an array of data
elements that form an addressable memory. All requests ultimately turn into accesses into the
memory object.

The Bus
The bus is a collection of tlm_req_rsp_channels, one for each master and one for each slave,
and connections from the channels to the masters and slaves themselves. It also has a global
address map that maps addresses to bus unit numbers.The bus’ role is to map requests to a unit
connected to the bus, forward the requests to the unit, and return the response back to the
requester.

43 class bus : public sc_module
44 {
45 public:
46
47 bus(sc_module_name nm);
48 SC_HAS_PROCESS(bus);
49
50 sc_export<tlm_master_if<request,response> >
master_export[bus_masters];
51 sc_export<tlm_slave_if<request,response> >
slave_export[bus_masters];
52 sc_port<addr_config_if, bus_masters> addr_map_port;
53

Advanced Verification Methodology Cookbook, 2.0110

Introduction to TLM: Transaction Level Bus Example

July 24, 2006

54 private:
55 // internal channels
56 addr_map amap;
57 tlm_req_rsp_channel<request,response> master_channel[bus_masters];
58 tlm_req_rsp_channel<request,response> slave_channel[bus_masters];
59
60 private:
61 void build_addr_map();
62 void run();
63 };
file: topics/04_tlm/06_tlm_bus_sc/bus.h
file: topics/04_tlm/06_tlm_bus_sc/bus.h

The number of masters connected to a bus is fixed with a constant

38 const int bus_masters = 4;
file: topics/04_tlm/06_tlm_bus_sc/bus.h

The structure of the bus model itself is a while(1) loop that continually processes requests.
Inside the while loop is a for loop that polls each master/slave to see if there are any requests to
process. This forms a very simple arbitration mechanism. Here is the main loop in its entirety.
Below, we take it a apart for closer inspection.

53 while(1)
54 {
55 masters_serviced = 0;
56 for(unsigned portidx = 0; portidx < bus_masters; portidx++)
57 {
58 wait(SC_ZERO_TIME);
59
60 // get the next request from a master. If there is
61 // nothing to get from this master then continue on to
62 // the next master.
63 bool ok_to_get = master_channel[portidx].get_request_export-
>nb_can_get();
64 if(!ok_to_get)
65 continue;
66
67 req = master_channel[portidx].get_request_export->get();
68 masters_serviced++;
69
70 int reqidx = amap.lookup(req.addr);
71 if(reqidx < 0)
72 continue;
73
74 slave_channel[reqidx].put_request_export->put(req);
75 rsp = slave_channel[reqidx].get_response_export->get();
76 master_channel[portidx].put_response_export->put(rsp);
77 }
78
79 // masters_serviced == 0 means there were no requests or
80 // responses to process. When that becomes the case
81 // then we’re done.
82 if(masters_serviced == 0)
83 break;
84 }

Introduction to TLM: Transaction Level Bus Example

Advanced Verification Methodology Cookbook, 2.0 111
July 24, 2006

file: topics/04_tlm/06_tlm_bus_sc/bus.cc
file: topics/04_tlm/06_tlm_bus_sc/bus.cc

The integer variable portidx refers to the particular master port that’s currently being serviced.
For each master the bus model asks if there are any requests to service. The nb_can_get()
function returns true if there is something in the request fifo which can be retrieved with a call to
get(). If there is nothing to get, we continue with the next master.

63 bool ok_to_get = master_channel[portidx].get_request_export-
>nb_can_get();
64 if(!ok_to_get)
65 continue;
66
67 req = master_channel[portidx].get_request_export->get();
file: topics/04_tlm/06_tlm_bus_sc/bus.cc

The address map, which is held in the variable amap, is consulted to map the address of the
request to the device which will service the request. If there’s an error with the address mapping
then the request index returned is a negative value. In that case the address map issues an error
and we drop the request on the floor.

70 int reqidx = amap.lookup(req.addr);
71 if(reqidx < 0)
72 continue;
file: topics/04_tlm/06_tlm_bus_sc/bus.cc

Once we’ve determined that we have a request to service and which device will service it then
we forward the request to the device and wait for a response. Once the response is received we
then we send pass it back to the requestor.

74 slave_channel[reqidx].put_request_export->put(req);
75 rsp = slave_channel[reqidx].get_response_export->get();
76 master_channel[portidx].put_response_export->put(rsp);
file: topics/04_tlm/06_tlm_bus_sc/bus.cc

Note that the put and get calls are all blocking. That doesn’t mean that time will advance, it
means time could advance.

The way our little bus is designed, only one thing at a time can occupy the bus. Once the address
mapping is done and the request is ready to be processed, the request owns the bus until the
device servicing the request completes its operation and returns a response. All other devices
must block until the bus comes around to service their requests.

Advanced Verification Methodology Cookbook, 2.0112

Introduction to TLM: Transaction Level Bus Example

July 24, 2006

AVM Mechanics in SystemVerilog
Interfaces

Advanced Verification Methodology Cookbook, 2.0 113
July 24, 2006

Chapter 5
AVM Mechanics in SystemVerilog

This chapter discusses how to build hierarchical testbenches in SystemVerilog using the AVM
classes. In particular we discuss how to connect components together using transaction level
connections in both flat and hierarchal structures.

Interfaces
Connecting things together requires interfaces. Unfortunately, the term interface is used in
several distinct ways. In the SystemVerilog implementation of the AVM, there are three
meanings of the word interface. In increasing order of abstraction, there are:

• SystemVerilog interface

• SystemVerilog virtual interface

• A pure virtual interface class

SystemVerilog Interface
An interface in SystemVerilog is a kind of instantiable block. It is basically a bundle of wires
grouped together. Interfaces are used to connect to and from the DUT, and may also be used to
connect sub blocks of the DUT together. For example:

23 interface mem_pins_if;
24
25 parameter int ADDRESS_WIDTH = 8;
26 parameter int DATA_WIDTH = 8;
27
28 typedef bit[ADDRESS_WIDTH-1:0] address_t;
29 typedef bit[DATA_WIDTH-1:0] data_t;
30
31 address_t address;
32 data_t wr_data;
33 data_t rd_data;
34 bit clk , rst;
35 bit req , rw;
36 bit ack , err;
37
38 //...
39
60 endinterface : mem_pins_if

Advanced Verification Methodology Cookbook, 2.0114

AVM Mechanics in SystemVerilog
Interfaces

July 24, 2006

You can instantiate and connect devices using the interface instead of specifying each port
individually.

27 module top;
28
29 mem_pins_if #(.ADDRESS_WIDTH(8) , .DATA_WIDTH(8)) pins_if();
30
31 mem_master master(pins_if.master_mp);
32 mem_dut dut(pins_if.slave_mp);
33
51 endmodule

SystemVerilog Virtual Interface
A virtual interface is a handle to an interface. AVM transactors talk to the DUT by using virtual
interfaces. Referring to a real interface through a virtual interlace makes the transactor reusable.
The transactor is not required to know anything about the design, only about the interface. For
example:

class mem_monitor #(int ADDRESS_WIDTH = 8 , int DATA_WIDTH = 8)
 extends avm_verification_component;

 virtual mem_pins_if #(
 .ADDRESS_WIDTH(ADDRESS_WIDTH) ,
 .DATA_WIDTH(DATA_WIDTH)
) pins_if;

 analysis_port #(transaction_t) ap;

 task run;

 forever begin

 @(posedge pins_if.monitor_mp.clk);
 if(pins_if.monitor_mp.rst) begin
 state = WAIT_FOR_REQ;
 continue;
 end

 case(state)
 WAIT_FOR_REQ : begin … end
 WAIT_FOR_ACK : begin … end
 endcase

 end
 endtask
endclass

The code above use the virtual interface pins_if to monitor a bus of type mem_pins_if.
However, it knows nothing about the design in which this interface is used, and so it can be used
to monitor any bus of this type in any design.

AVM Mechanics in SystemVerilog
Ports and Exports

Advanced Verification Methodology Cookbook, 2.0 115
July 24, 2006

Pure Virtual Interface Class
Interface classes are abstract base classes. Usually, all its methods are pure virtual. In the AVM,
an interface class is usually one of the TLM interfaces and is used to move transactions around
the testbench. The three TLM put interfaces are shown below:

virtual class tlm_blocking_put_if #(type T = int);
 pure virtual task put(input T t);
endclass

virtual class tlm_nonblocking_put_if #(type T = int);
 pure virtual function bit try_put(input T t);
 pure virtual function bit can_put();
endclass

virtual class tlm_blocking_put_if #(type T = int);
 pure virtual task put(input T t);
 pure virtual function bit try_put(input T t);
 pure virtual function bit can_put();
endclass

These interface classes can be thought of as specifying a contract between a customer and a
service provider. On one side, the customer says “this is the service that I require - but I don't
care how you do it.” The service provider says “This is what I provide - it's up to you what you
do with it.” If the service provider provides the interface required by the other component, a
contract is agreed. In general, customers will require as little as possible to avoid overpaying,
while service providers will provide as much as possible to achieve greater market share.

Ports and Exports
Ports and exports are objects in the AVM library that facilitate matching of requires and
provides interfaces to form a connection.

Ports
Ports are interfaces that require an implementation to be supplied externally.

Ports should require as little as possible: for example, avm_stimulus has a
tlm_blocking_put_if port, not a tlm_put_if port, because it does not need the non blocking
functions in tlm_put_if.

class avm_stimulus #(type trans_type = avm_transaction)
 extends avm_named_component;

 tlm_blocking_put_if #(trans_type) blocking_put_port;

endclass

Advanced Verification Methodology Cookbook, 2.0116

AVM Mechanics in SystemVerilog
The Environment Class

July 24, 2006

Exports
On the other hand, a channel should provide as many interfaces as possible. Tlm_fifo for
example provides twelve interfaces - put, get, peek and get_peek in blocking, non blocking and
combined forms:

class tlm_fifo #(type T = int , type CLONE = avm_built_in_clone #(T))
 extends avm_named_component;

 typedef tlm_fifo #(T , CLONE) this_type;

 tlm_put_imp #(this_type , T) put_export;
 tlm_blocking_put_imp #(this_type , T) blocking_put_export;
 tlm_nonblocking_put_imp #(this_type , T) nonblocking_put_export;

 // and similar for get, peek and get_peek

 function new(string name = "" ,
 avm_named_component parent = null ,
 int size = 1);
 super.new(name , parent);

 put_export = new(this);
 blocking_put_export = new(this);
 nonblocking_put_export = new(this);

 // and similar for get, peek and get_peek
 endfunction

 task put(input T t); … endtask
 function bit try_put(input T t); … endfunction
 function bit can_put(); … endfunction

 // and similar for get, peek and get_peek
endclass

The Environment Class
The environment class is used in the class based version of the SystemVerilog Implementation
of the AVM. All the class based verification components in a SystemVerilog testbench are
contained within the environment class. Usually, the only two publicly visible methods of any
environment class are the constructor and the do_test task.

module top;

 mem_pins_if #(.ADDRESS_WIDTH(8) , .DATA_WIDTH(8)) pins_if();

 mem_master master(pins_if.master_mp);
 mem_dut dut(pins_if.slave_mp);

 clock_reset cr(pins_if);

AVM Mechanics in SystemVerilog
The Environment Class

Advanced Verification Methodology Cookbook, 2.0 117
July 24, 2006

 mem_env #(8 , 8) env;

 initial begin

 env = new(pins_if);
 env.do_test;

 $finish;
 end

endmodule

In the code above, we have a master connected to a slave using the mem_pins_if. This interface
is passed into the constructor of the environment class so that a class based component inside
the environment class can monitor the activity on the bus.

The do_test method has five phases. All the phases in the do_test method are functions
except the execute phase. This means anything that consumes time, or even calls @, wait or
fork ... join, must be done in the execute phase. The five phases are as follows:

1. construct -

The construct phase constructs all the class based verification components in the
testbench. It also makes local copies of the virtual interface passed into the constructor
from the top level module or program block.

2. connect -

The connect phase is where you connect the class based verification components
together. See The Connect Phase for more details.

3. configure -

The configure phase is used to do zero time configuration of the testbench components.
This may include back door memory initialization, the setting of parameters in drivers to
determine error injection rates, or the configuration of the reporting facilities. Each
component has a function called configure() which is called in this phase.

4. execute -

The execute phase is the only phase in which the testbench components can interact with
the SystemVerilog schedule by calling @, wait, or fork ... join. There are two
methods used in the execute phase — avm_env::execute and
avm_verification_component::run.

The do_test tasks forks all of the run tasks in all avm_verification_components (i.e.
components derived from avm_verification_component). These are forked with
join_none so that they all run independently. Components constructed with a run task
(invoked in do_tests) are typically transactors that must start at time 0. Once the tasks
are forked, then execute in avm_env is called. Execute is a good place to put test
control functionality. For example you may wish to use the execute task to start

Advanced Verification Methodology Cookbook, 2.0118

AVM Mechanics in SystemVerilog
The Connect Phase

July 24, 2006

stimulus generators whose operation is controlled externally from a scoreboard or a
coverage collector.

5. report -

The report method of every testbench component is called. The report method is a
useful place to put end of simulation messages, typically reporting on things like overall
coverage statistics and the success/failure status of a scoreboard.

The Connect Phase
The connect phase is where you specify the interconnection between testbench components.
Components can be connected non-hierarchically, all at the same level without any hierarchy, or
hierarchically -- with components at different levels.

Non-Hierarchical Binding
The "contract" between port and export is made when the export is assigned to the port in a
connect function. Suppose we want to connect the producer and consumer below to a tlm_fifo.

class producer extends avm_verification_component;

 tlm_blocking_put_if #(int) put_port;

 task run();
 for(int i = 0; i < 10; i++) begin
 $display("about to put %d" , i);
 put_port.put(i);
 end
 endtask;
endclass

class consumer extends avm_verification_component;

 tlm_blocking_get_if #(int) get_port;

 task run();
 int i;
 forever begin
 get_port.get(i);
 $display("Just got %d" , i);
 end
 endtask
endclass

The two run methods above assume that put_port and get_port are not null - they require
implementations of the blocking put and get interfaces to be supplied from the outside, and if
they have not been provided the run methods will cause a run time error.

class my_env extends avm_env;
 producer p;

AVM Mechanics in SystemVerilog
The Connect Phase

Advanced Verification Methodology Cookbook, 2.0 119
July 24, 2006

 consumer c;
 tlm_fifo #(int) f;

 function new;
 p = new("producer");
 c = new("consumer");
 f = new("fifo");
 endfunction

 function void connect;
p.put_port = f.blocking_put_export;
c.get_port = f.blocking_get_export;

 endfunction

 task execute;
 #100;
 endtask
endclass

The tlm_fifo supplies the blocking interface to the producer and consumer. The contract is
agreed in the connect method above, when the exports are assigned to the ports. The avm_env
base class automatically calls connect before it starts the run methods in the producer and
consumer, so that when the run methods start the ports are not null and the producer and
consumer work as expected.

Figure 5-1. Ports and Exports Before Calling connect

The shading in Figure 5-1 shows the exports that are not null before the connect method is
called, while Figure 5-2 shows the ports and exports that are not null just before the run tasks
are executed.

Figure 5-2. Ports and Exports After Calling connect

This pair of assignments
seals the contract between
requires side and
provides side of each
interface

tlm_fifo
producer consumer

tlm_fifo
producer consumer

Advanced Verification Methodology Cookbook, 2.0120

AVM Mechanics in SystemVerilog
The Connect Phase

July 24, 2006

Ports, Exports and Hierarchy
Simple testbenches can be implemented using a flat structure. For these simple testbenches, the
non hierarchical port to export binding in the section above will be sufficient.

However, more complex testbenches with significant amounts of reuse require the use of
hierarchy in the testbench. Consider a tlm_fifo in a driver connected through the hierarchy to a
producer.

Figure 5-3. Hierarchy Before Calling connect

At the top level, we have port to export connection as in the flat case. However, we have now
introduced two new types of connection: in the driver, we have an export to export connection,
and in the hierarchical producer we have a port to port connection.

To get the export out of the driver before calling connect at the top level, we do the export to
export assignment in a method called export_connections.

class driver extends avm_verification_component;
 tlm_blocking_put_if #(my_transaction) blocking_put_export;
 virtual interface m_bus_if;

 local tlm_fifo #(my_transaction) fifo;

 function new(string name , avm_named_component parent = null);
 super.new(name , parent);
 fifo = new("fifo");
 endfunction

 function void export_connections;
 blocking_put_export = fifo.blocking_put_export;
 endfunction

 task run;
 // implement state machine, stimulate bus
 endtask
endclass

producer tlm_fifo

AVM Mechanics in SystemVerilog
The Connect Phase

Advanced Verification Methodology Cookbook, 2.0 121
July 24, 2006

Figure 5-4. Assignment to Hierarchical Export

The connect method at the top level assigns the top level port to the top level export:

class my_env extends avm_env;
 hierarchical_producer hp;
 driver d;
 tlm_fifo #(int) f;
 // virtual interface omitted

 function new;
 hp = new("producer");
 d = new("driver");
 endfunction

 function void connect;
 hp.blocking_put_port = d.blocking_put_export;
 endfunction

 task execute;
 #100;
 endtask
endclass

Figure 5-5. Assignment to Hierarchical Port

Finally, we need to get the top level port down to the lower level port in the hierarchical
producer. We do this using the import_connections method:

class hierarchical_producer extends avm_named_component;
 tlm_blocking_put_if #(my_transaction) blocking_put_port;
 local producer p;

 function new(string name , avm_component parent = null);
 super.new(name , parent);
 p = new("producer");

producer tlm_fifo

producer tlm_fifo

Advanced Verification Methodology Cookbook, 2.0122

AVM Mechanics in SystemVerilog
The Connect Phase

July 24, 2006

 endfunction

 function void import_connections;
 p.blocking_put_port = blocking_put_port;
 endfunction

endclass

Figure 5-6. Assignment to Internal Port

The testbench designer does not have to work out in which order to call these various methods.
All the verification engineer has to do is to work out whether a connection is a port to export
connection, an export to export connection, or a port to port connection; and put it in the
appropriate method. The AVM library makes sure the correct methods are called in the correct
order.

Table 5-1.

Connection Type Method Direction

Export to Export export_connections Up and Out

Port to Export connect Across

Port to Port import_connections Down and In

producer tlm_fifo

AVM Mechanics in SystemVerilog
The Connect Phase

Advanced Verification Methodology Cookbook, 2.0 123
July 24, 2006

Connecting Analysis Ports
An analysis port is an implementation of the object oriented design pattern called observer. It’s
implemented as a thin layer around a list of analysis interfaces. Since there may be more than
one interface, we cannot simply use assignment to make a connection. Instead, we use the
register function to add an interface to the list.

Consider one monitor connected to two coverage objects:

Figure 5-7. Analysis Ports Before Calling connect

class my_env extends avm_env;
 monitor m;
 cov1 c1;
 cov2 c2;

 function new;
 m = new("monitor");
 c1 = new("cov1");
 c2 = new("cov2");
 endfunction

 function void connect;
 m.ap.register(c1.analysis_export);
 m.ap.register(c2.analysis_export);
 endfunction
endclass

The register functions in the code above adds the two analysis interfaces into the list of
interfaces in the analysis port, with the result that the list is no longer empty. When the monitor
calls write, the write methods in both coverage objects are called.

monitor

cov1 cov2

Advanced Verification Methodology Cookbook, 2.0124

AVM Mechanics in SystemVerilog
The Connect Phase

July 24, 2006

Figure 5-8. Analysis Ports After connect Finishes

Analysis Ports and Hierarchy
Analysis exports are exported up and out of the hierarchy using assignment in
export_connections, in the same way that is used for any other interfaces. We can do this
because an analysis export is just a single interface.

However, because analysis ports are lists of interfaces, they need to be imported using the
register function. Consider a hierarchical monitor on a pipelined bus:

Figure 5-9. Hierarchical Monitor on Pipelined Bus

At the top level, we use register in a connect method in the normal way.

monitor

coverage 1 coverage 2

address phase
monitor

data phase
monitor

coverage 1 coverage 2 coverage 1 coverage 2

AVM Mechanics in SystemVerilog
The Connect Phase

Advanced Verification Methodology Cookbook, 2.0 125
July 24, 2006

class my_env extends avm_env;
 monitor m;
 cov1 c1;
 cov2 c2;
 cov3 c3;
 cov4 c4;

 function new;
 m = new("monitor");
 c1 = new("cov1");
 c2 = new("cov2");
 c3 = new("cov3");
 c4 = new("cov4");
 endfunction

 function void connect;
 m.address_ap.register(c1.analysis_export);
 m.address_ap.register(c2.analysis_export);
 m.data_ap.register(c3.analysis_export);
 m.data_ap.register(c4.analysis_export);
 endfunction
endclass

Figure 5-10. Registering Listeners to Analysis Ports

To import the connections into the sub block, we register the parent port with the lower level
port (first of all remembering to construct the parent analysis ports).

class pipelined_monitor extends avm_named_component;
 analysis_port #(address_transaction) address_ap;
 analysis_port #(data_transaction) data_ap;

 local address_monitor m_address_monitor;
 local data_monitor m_data_monitor;

address phase
monitor

data phase
monitor

coverage 1 coverage 2 coverage 1 coverage 2

Advanced Verification Methodology Cookbook, 2.0126

AVM Mechanics in SystemVerilog
The Connect Phase

July 24, 2006

 function new(string name , avm_named_component parent = null);
 super.new(name , parent);

 address_ap = new;
 data_ap = new;

 m_address_monitor = new("address_phase");
 m_data_monitor = new("data_phase");
 endfunction

 function void import_connections;
 m_address_monitor.ap.register(address_ap);
 m_data_monitor.ap.register(data_ap);
 endfunction

endclass

Figure 5-11. Registering Hierarchical Analysis Ports

Constructing a new analysis port at every level of the hierarchy and connecting them using
register has the beneficial effect that we can add coverage or scoreboards at any level of the
hierarchy, as shown in Figure 5-12.

address phase
monitor

data phase
monitor

coverage 1 coverage 2 coverage 1 coverage 2

AVM Mechanics in SystemVerilog
The Connect Phase

Advanced Verification Methodology Cookbook, 2.0 127
July 24, 2006

Figure 5-12. Using Analysis Ports at Multiple Levels of Hierarchy

address phase
monitor

data phase
monitor

coverage 1 coverage 2 coverage 1 coverage 2

scoreboard

Advanced Verification Methodology Cookbook, 2.0128

AVM Mechanics in SystemVerilog
The Connect Phase

July 24, 2006

Virtual Interfaces and the avm_env
Virtual interfaces are just a kind of port. They are handles that are required by leaf level
transactors and provided by the DUT itself.

An environment class has to have a virtual interface for every interface that it wants to connect
to: in this sense it is no different from the port list of an avm_named_component. However,
virtual interfaces are imported from the top level module or a program block by passing them in
the constructor, rather than using the import_connections function as is the case for a
transactor.

For example, suppose we have a monitor listening to bus, as shown in Figure 5-13:

Figure 5-13. Monitor Connected to a Bus

In the top level module, we create the environment and pass in the interface to the constructor:

module top;
 mem_pins_if pins_if();
 mem_master master(pins_if.master_mp);
 mem_dut dut(pins_if.slave_mp);

 mem_env env;

 initial begin
 env = new(pins_if);
 env.do_test();
 $finish;

master

slave

top

env

AVM Mechanics in SystemVerilog
The Connect Phase

Advanced Verification Methodology Cookbook, 2.0 129
July 24, 2006

 end
endmodule

In the environment, we first store local copies of the virtual interface in the constructor :

class mem_env extends avm_env;

 local virtual mem_pins_if m_bus_if;
 local mem_monitor #(ADDRESS_WIDTH , DATA_WIDTH) m_monitor;

 function new(virtual mem_pins_if bus_if);
 m_bus_if = bus_if;
 m_monitor = new("monitor");
 endfunction
 …
 endclass

Figure 5-14. Connecting Environment to an Interface

And finally we assign the local copy of the virtual interface to the monitor in the connect
function of the environment class:

class mem_env extends avm_env;

 function void connect;
 m_monitor.pins_if = m_bus_if;
 endfunction

 task execute;

master

slave

top

env

Advanced Verification Methodology Cookbook, 2.0130

AVM Mechanics in SystemVerilog
Summary

July 24, 2006

 # 1000;
 endtask
endclass

Figure 5-15. Passing the Virtual interface to Components in the Environment

In a more complicated testbench, there may be more than one device and hence more than one
interface needed to communicate with the testbench.We need to pass all the interfaces in
through the constructor, make copies of them all in the environment class, and assign them all to
the appropriate transactors in the connect function. For hierarchical testbenches, we must pass
virtual interfaces down deeper into the testbench using import_connections, just like any
other port is passed down the hierarchy.

Summary
AVM provides transaction level interfaces and connectors since they are not built in to the
AVM language. Transaction interfaces have two sides, a requires side and a provides side. A
port represents the requires half of the interface and an export represents the provides half. A
simple assignment in the connect function joins the two halves to form a complete connection.
The avm_env class provides the hooks and invokes the process for forming the connections.

master

slave

top

env

Testbench Fundamentals

Advanced Verification Methodology Cookbook, 2.0 131
July 24, 2006

Chapter 6
Testbench Fundamentals

A testbench must do at least two things. It must provide a means for:

• Generating stimulus and applying it to the DUT.

• Observing the behavior of the DUT as the stimulus is applied during simulation.

In this chapter, we’ll look at stimulus generators, for creating and applying stimulus, and
monitors, for observing system behavior.

Advanced Verification Methodology Cookbook, 2.0132

Testbench Fundamentals

July 24, 2006

Testbench Fundamentals
Testbench for a Memory

Advanced Verification Methodology Cookbook, 2.0 133
July 24, 2006

Testbench Fundamentals

Testbench for a Memory

Figure 6-1. Memory Testbench

Description
This simple testbench contains just three components: an RTL master, an RTL slave and a
monitor.

Key Concepts
• A monitor is a passive device that does not affect the operation of the DUT. It is

constructed using a state machine very similar to the one contained in the DUT. The role
of the monitor is to watch activity on a bus and report what it sees.

• A monitor has a pin interface which watches the activity on a bus. Is uses that pin
activity to drive the internal state machine which recognizes transactions.

• A monitor converts pin level activity to a stream of transactions.

Monitor Construction
The essential structure of the monitor is a clock-driven state machine. The state machine is
implemented as a case statement. Each alternative in the case statement represents the actions
for a particular state. The action code reads the pins and may cause the state to change to cause
a different set of actions to run on the next clock cycle.

The monitor’s main purpose is to convert signal level activity to a sequence of transactions. The
state action code does two things to further this purpose. At each clock cycle, it:

• Looks at the state of the pins to assess the state of the bus.

• Collects data to assemble into a transaction object.

mem_stim mem_dut

mem_monitor

Advanced Verification Methodology Cookbook, 2.0134

Testbench Fundamentals
Testbench for a Memory

July 24, 2006

Testbench Fundamentals: Memory Example

Advanced Verification Methodology Cookbook, 2.0 135
July 24, 2006

Testbench Fundamentals: Memory Example

SystemVerilog Implementation Details
This code is triggered on the positive edge of the clock. On reset, the state machine returns to
WAIT_FOR_REQ. In WAIT_FOR_REQ it creates a request, in WAIT_FOR_ACK it creates the matching
response and combines the request and response into a single transaction.

51 forever begin
52
53 @(posedge pins_if.monitor_mp.clk);
54
55 if(pins_if.monitor_mp.rst) begin
56 state = WAIT_FOR_REQ;
57 continue;
58 end
59
60 case(state)
61 WAIT_FOR_REQ : begin
62
63 if(pins_if.monitor_mp.req) begin
64
65 request = read_request_from_bus();
66
67 avm_report_message(“Saw Mem Request” ,
68 request.convert2string());
69
70 state = WAIT_FOR_ACK;
71 end
72
73 end
74 WAIT_FOR_ACK : begin
75
76 if(pins_if.monitor_mp.ack) begin
77
78 response = read_response_from_bus();
79
80 avm_report_message(“Saw Mem Response” ,
81 response.convert2string());
82
83 transaction = new(request , response);
84
85 avm_report_message(“Saw Mem Transaction” ,
86 transaction.convert2string());
87
88 ap.write(transaction);
89
90 state = WAIT_FOR_REQ;
91 end
92
93 end
94 endcase
file: topics/06_testbench_fundamentals/mem_svc/mem_monitor.svh

The code for the convenience functions read_request_from_bus and
read_response_from_bus is shown below:

Advanced Verification Methodology Cookbook, 2.0136

Testbench Fundamentals: Memory Example

July 24, 2006

99 function request_t read_request_from_bus;
100
101 request_t request;
102
103 request = new(pins_if.monitor_mp.address ,
104 (pins_if.monitor_mp.rw ? MEM_WRITE : MEM_READ) ,
105 pins_if.monitor_mp.wr_data);
106
107 return request;
108
109 endfunction
110
111 function response_t read_response_from_bus;
112
113 response_t response;
114
115 response =
116 new((pins_if.monitor_mp.rw ? MEM_WRITE : MEM_READ) ,
117 (pins_if.monitor_mp.err ? MEM_ERROR : MEM_SUCCESS) ,
118 pins_if.monitor_mp.rd_data);
119
120 return response;
121
122 endfunction
file: topics/06_testbench_fundamentals/mem_svc/mem_monitor.svh

In both cases, we interrogate the values of the pin level signals and pass the appropriate values
into the constructor of the transaction. We then return the newly created transaction for use in
the state machine.

Using convenience functions is not strictly necessary, but it does allow us to simplify the design
of the state machine.

Testbench Fundamentals: Memory Example

Advanced Verification Methodology Cookbook, 2.0 137
July 24, 2006

Testbench Fundamentals: Memory Example

SystemC Implementation Details
The SystemC implementation of the monitor’s state machine is very similar to the
SystemVerilog implementation.

The run() method is made sensitive to the positive edge of the clock in the constructor:

23 mem_monitor::mem_monitor(sc_module_name nm) :
24 sc_module(nm) {
25
26 SC_METHOD(run);
27 sensitive << clk.pos();
28 dont_initialize();
29
30 }
file: topics/06_testbench_fundamentals/mem_sc/mem_monitor.cc

The run method implements the same state machine as the SystemVerilog:

32 void mem_monitor::run() {
33
34 if(rst) {
35 m_state = WAIT_FOR_REQ;
36 }
37
38 else {
39
40 switch(m_state) {
41 case WAIT_FOR_REQ :
42
43 if(req) {
44
45 read_request_from_bus();
46
47 cout << name() << “ Saw Mem Request “ << m_request
48 << “ at “ << sc_time_stamp() << endl;
49
50 m_state = WAIT_FOR_ACK;
51 }
52
53 break;
54
55 case WAIT_FOR_ACK :
56
57 if(ack) {
58
59 read_response_from_bus();
60
61 m_transaction.m_request = m_request;
62 m_transaction.m_response = m_response;
63
64 ap.write(m_transaction);
65

Advanced Verification Methodology Cookbook, 2.0138

Testbench Fundamentals: Memory Example

July 24, 2006

66 cout << name() << “ Saw Mem Transaction “ << m_transaction
67 << “ at “ << sc_time_stamp() << endl;
68
69 m_state = WAIT_FOR_REQ;
70 }
71
72 break;
73
74 }
75 }
76 }
file: topics/06_testbench_fundamentals/mem_sc/mem_monitor.cc

The convenience functions read the data from the pins into the request and response data
structures:

78 void mem_monitor::read_request_from_bus() {
79 m_request.m_address = address.read();
80 m_request.m_type = rw ? MEM_WRITE : MEM_READ;
81 m_request.m_data = wr_data.read();
82 }
83
84 void mem_monitor::read_response_from_bus() {
85 m_response.m_type = rw ? MEM_WRITE : MEM_READ;
86 m_response.m_err = err ? MEM_ERROR : MEM_SUCCESS;
87 m_response.m_rd_data = rd_data.read();
88 }
file: topics/06_testbench_fundamentals/mem_sc/mem_monitor.cc

The only significant difference between the SystemC and SystemVerilog implementations is
that since we can use pass-by-value in SystemC, we do not need to explicitly call new each time
we identify a new transaction.

Testbench Fundamentals
Testbench for Memory with Separate Driver

Advanced Verification Methodology Cookbook, 2.0 139
July 24, 2006

Testbench Fundamentals

Testbench for Memory with Separate Driver

Figure 6-2. Memory Testbench

Description
In this example, we replace the RTL master from the previous example with a transaction level
stimulus generator and a driver.

Key Concepts
• Stimulus generation is kept separate from the driver. This separation enables reuse. We

can connect a different stimulus generator to the same driver, or we can use the same
stimulus generator at the system level by connecting it to a different driver.

• The role of the stimulus generator is simply to generate a stream of transactions.

• The role of the driver is to convert this stream of transactions to pin level activity.

• The generator pattern is used to fine tune the random stimulus generation.

Transaction Level Stimulus Generator
A transaction class is a class which represents the data transfer involved in the communication
between master and slave, without describing any of the detailed timing and handshaking that
takes place on the actual bus.

A stimulus generator generates a stream of transactions. In this example, the stream is generated
randomly, but it may also be necessary to generate directed streams of transactions — either to
implement an initialization sequence before the random testing starts, or to implement the test
itself.

mem_stim mem_driver mem_dut

mem_monitor

Advanced Verification Methodology Cookbook, 2.0140

Testbench Fundamentals
Testbench for Memory with Separate Driver

July 24, 2006

In our simple memory protocol, the stimulus generator generates operations (read or write),
addresses, and data for writes. The details of the memory protocol are left to the driver.

Driver Construction
The driver converts abstract stimulus to concrete stimulus. In so doing, it must operate the pin
level protocol on the bus.

In this simple example, the driver is a blocking driver: it directly implements the blocking put
method called by the stimulus generator. This put method blocks when the bus is not yet in the
state in which it can accept a new request or provide a new response.

In subsequent chapters, we will see other drivers which make use of fifos to manage the
communication between stimulus generator and driver, and which make use of state machines
to drive the bus. These drivers are better suited to more complicated bus protocols and can deal
with many stimulus generators rather than just one, as shown in this example.

Testbench Fundamentals: Memory with Separate Driver Example

Advanced Verification Methodology Cookbook, 2.0 141
July 24, 2006

Testbench Fundamentals: Memory with Separate Driver Example

SystemVerilog Implementation Details

Stimulus Generator Implementation
The execute method is used to control the stimulus generation, which in turn controls the rest of
the testbench. The control of the testbench is performed using the generator pattern.

First of all, we define the request transaction type, all of whose properties are random:

26 class mem_request #(int ADDRESS_WIDTH = 8 , int DATA_WIDTH = 8)
27 extends avm_transaction;
28
29 typedef bit[ADDRESS_WIDTH-1:0] address_t;
30 typedef bit[ADDRESS_WIDTH-1:0] data_t;
31
32 typedef mem_request #(ADDRESS_WIDTH , DATA_WIDTH) request_t;
33
34 rand address_t m_address;
35 rand data_t m_wr_data;
36 rand mem_transaction_type_e m_type;
37
38 function new(address_t address = 0 ,
39 mem_transaction_type_e transaction_type = MEM_READ ,
40 data_t wr_data = 0);
41
42 m_address = address;
43 m_wr_data = wr_data;
44 m_type = transaction_type;
45
46 endfunction
47
48 function request_t clone();
49 request_t request;
50
51 request = new(m_address , m_type , m_wr_data);
52 return request;
53 endfunction
54 // ...
file: topics/06_testbench_fundamentals/mem_tr_sv/mem_transaction.svh

Of particular importance is the clone method, which is used by the stimulus generator to create
a new copy of each transaction. In SystemVerilog, this is necessary to prevent the current
transaction being accidentally overwritten by the randomization of the next transaction. This
request class is used wherever we have transactors that deal with the mem protocol. In a large
organization, these transaction classes are written once by a specialized verification
infrastructure team and delivered to the rest of the organization.

Next, we define local extensions of the mem request class. We extend the mem request class
with new constraints which are now available only to this particular testbench.

28 class write_request #(int ADDRESS_WIDTH = 8 , int DATA_WIDTH = 8)

Advanced Verification Methodology Cookbook, 2.0142

Testbench Fundamentals: Memory with Separate Driver Example

July 24, 2006

29 extends mem_request #(ADDRESS_WIDTH , DATA_WIDTH);
30
31 constraint write_only { this.m_type == MEM_WRITE; }
32
33 endclass
34
35 class read_request #(int ADDRESS_WIDTH = 8 , int DATA_WIDTH = 8)
36 extends mem_request #(ADDRESS_WIDTH , DATA_WIDTH);
37
38 constraint read_only { this.m_type == MEM_READ; }
39
40 endclass
file: topics/06_testbench_fundamentals/02_mem_svc/mem_env.sv

Finally, in the execute method of the testbench, we tell the stimulus generator to generate: ten
random writes, then ten random reads, and finally, a time-limited, but unknown number of
completely random transactions.

90 task execute;
91
92 m_stimulus.generate_stimulus(m_write_gen , 10);
93 m_stimulus.generate_stimulus(m_read_gen , 10);
94
95 fork
96 m_stimulus.generate_stimulus;
97 terminate;
98 join
99
100 endtask
101
102 task terminate;
103 #100;
104 m_stimulus.stop_stimulus_generation;
105 endtask
file: topics/06_testbench_fundamentals/02_mem_svc/mem_env.sv

Testbench Fundamentals: Memory with Separate Driver Example

Advanced Verification Methodology Cookbook, 2.0 143
July 24, 2006

Testbench Fundamentals: Memory with Separate Driver Example

SystemC Implementation Details

Stimulus Generator Implementation
The overall organization of the stimulus generator in SystemC is similar, though not identical,
to the organization of the SystemVerilog. Because we have pass-by-value semantics and
operator overloading, the actual definition of the transaction is a lot simpler, but the mechanics
of stimulus generation using the SystemC Verification Library (SCV) are more cumbersome.

First of all, we define a transaction class:

28 class mem_request {
29 public:
30 ADDRESS_TYPE m_address;
31 DATA_TYPE m_data;
32 mem_transaction_type_e m_type;
35 };
file: topics/06_testbench_fundamentals/mem_sc/mem_transaction.h

This transaction class definition is a simpler than the equivalent in SystemVerilog, since we
simply take advantage of the built in constructors, assignment operators, streaming operators
and comparison operators rather than defining our own methods.

Next, we need to produce an scv extension for this class:

45 template<>
46 class scv_extensions<mem_request> : public
scv_extensions_base<mem_request>
47 {
48 public:
49 scv_extensions< ADDRESS_TYPE > m_address;
50 scv_extensions< DATA_TYPE> m_data;
51 scv_extensions<mem_transaction_type_e> m_type;
52
53 SCV_EXTENSIONS_CTOR(mem_request)
54 {
55 SCV_FIELD(m_address);
56 SCV_FIELD(m_data);
57 SCV_FIELD(m_type);
58 }
59 };
file: topics/06_testbench_fundamentals/mem_sc/mem_transaction_ext.h

This extension tells scv about each field that we want to randomize.

This extension is used by scv_smart_ptr to create a base constraint class that generates
unconstrained requests:

64 class mem_request_constraint_base : public scv_constraint_base
65 {

Advanced Verification Methodology Cookbook, 2.0144

Testbench Fundamentals: Memory with Separate Driver Example

July 24, 2006

66 public:
67 scv_smart_ptr< mem_request > req;
68
69 SCV_CONSTRAINT_CTOR(mem_request_constraint_base)
70 {}
71 };
file: topics/06_testbench_fundamentals/mem_sc/mem_transaction_ext.h

The smart pointer, req, contains the randomized request.

In a large organization, all this hard work is done by the verification infrastructure team and
published to the rest of the organization. The test writers’ task is a lot simpler: they can either
use the base constraint class, or add to it themselves.

22 class mem_read_request : public mem_request_constraint_base
23 {
24 public:
25 SCV_CONSTRAINT_CTOR(mem_read_request)
26 {
27 SCV_BASE_CONSTRAINT(mem_request_constraint_base);
28
29 SCV_CONSTRAINT(req->m_type() == MEM_READ);
30 }
31 };
32
33 class mem_write_request : public mem_request_constraint_base
34 {
35 public:
36 SCV_CONSTRAINT_CTOR(mem_write_request)
37 {
38 SCV_BASE_CONSTRAINT(mem_request_constraint_base);
39
40 SCV_CONSTRAINT(req->m_type() == MEM_WRITE);
41 }
42 };
file: topics/06_testbench_fundamentals/02_mem_sc/top.cc

In the code above, we define two local constraint classes, which only generate reads and writes.
Then, we generate 10 reads, 10 writes, and 20 unconstrained requests in an SC_THREAD
called run:

90 void top::run() {
91
92 mem_write_request write_gen(“write_gen”);
93 mem_read_request read_gen(“read_gen”);
94
95 m_stimulus.generate_stimulus(write_gen , 10);
96 m_stimulus.generate_stimulus(read_gen , 10);
97
98 m_stimulus.generate_stimulus(20);
99
100 }
file: topics/06_testbench_fundamentals/02_mem_sc/top.cc

Testbench Fundamentals
Memory TB with Independent Driver and Stimulus Generator

Advanced Verification Methodology Cookbook, 2.0 145
July 24, 2006

Testbench Fundamentals

Memory TB with Independent Driver and
Stimulus Generator

Figure 6-3. Memory Testbench

Description
The stimulus generator puts transactions into a fifo. The driver implements a state machine to
control the bus. At the appropriate point in the state machine, the driver uses a non blocking get
to see if there is a transaction available in the fifo.

Key Concepts
• Reusing the previous example’s stimulus generator with a different driver

• Using a fifo to handle the buffering and synchronization between the stimulus generator
and driver

• Using a state machine to model the bus

• Implementing a resetable driver

Driver Design
Because the tlm_fifo in this example and the blocking driver in the previous example both
implement the same blocking put interface, we can reuse the stimulus generator from the
previous example without modification.

The driver in this example differs from the previous example in that the stimulus generator and
driver each operate in their own thread. They communicate using a tlm_fifo.

mem_stim mem_driver mem_dut

men_monitor

Advanced Verification Methodology Cookbook, 2.0146

Testbench Fundamentals
Memory TB with Independent Driver and Stimulus Generator

July 24, 2006

Using this modeling style has a number of advantages. In SystemC, it means that we can
minimize the number of synchronization points (i.e. wait statements) which can adversely affect
simulation performance. Bus protocols can be written as state machines, which often is how
they are described in the specification. Using separate threads for processes, you can model
interrupts and resets in a coding style that is both easy to understand and maintain.

Another, more subtle advantage of separating the driver and the monitor is that no additional
machinery is needed to handle the problems caused by re-entrancy. The fifo has a built-in mutex
so the state machine only processes one transaction at a time. This allows us to connect many
stimulus generators to a single driver without having to explicitly add semaphores or mutexes.

Testbench Fundamentals: Memory with Independent Driver and Stim Generator

Advanced Verification Methodology Cookbook, 2.0 147
July 24, 2006

Testbench Fundamentals: Memory with Independent Driver and Stim Generator

SystemVerilog Implementation Details

Driver Implementation
20 class mem_driver #(int ADDRESS_WIDTH = 8 ,
21 int DATA_WIDTH = 8)
22 extends avm_verification_component;
23
24 typedef mem_request #(ADDRESS_WIDTH , DATA_WIDTH) request_t;
25 typedef mem_response #(DATA_WIDTH) response_t;
26
27 typedef enum { WAIT_FOR_REQ , WAIT_FOR_ACK } state_e;
28
29 virtual mem_pins_if #(
30 .ADDRESS_WIDTH(ADDRESS_WIDTH) ,
31 .DATA_WIDTH(DATA_WIDTH)
32) pins_if;
33
34 tlm_nonblocking_get_if #(request_t) request_port;
35
36 function new(string nm , avm_named_component p = null);
37 super.new(nm , p);
38 endfunction
file: topics/06_testbench_fundamentals/mem_svc/mem_driver.svh
...
endclass

The external connectivity of mem_driver is outlined above. It has a nonblocking get port which
is used to extract transactions from the fifo and a virtual interface which is used to manage the
pins on the bus. The constructor simply registers the name and parent with the base class.

The state machine is outlined below:

46 forever begin
47 @(posedge pins_if.master_mp.clk);
48
49 if(pins_if.master_mp.rst) begin
50 avm_report_message(“mem_driver” , “doing reset”);
51 state = WAIT_FOR_REQ;
52 continue;
53 end
54
55 case(state)
56 WAIT_FOR_REQ : begin
57
58 if(request_port.try_get(request)) begin
59
60 avm_report_message(“Sending Request” ,
request.convert2string());
61 write_request_to_bus(request);
62
63 state = WAIT_FOR_ACK;
64 end

Advanced Verification Methodology Cookbook, 2.0148

Testbench Fundamentals: Memory with Independent Driver and Stim Generator

July 24, 2006

65 end
66
67 WAIT_FOR_ACK : begin
68
69 pins_if.master_mp.req <= 0;
70
71 if(pins_if.master_mp.ack) begin
72
73 response = read_response_from_bus();
74 state = WAIT_FOR_REQ;
75 end
76
77 end
78 endcase
file: topics/06_testbench_fundamentals/mem_svc/mem_driver.svh

This state machine has two states, WAIT_FOR_REQ and WAIT_FOR_ACK.
WAIT_FOR_REQ uses try_get to get the next pending transaction. Since this is a non
blocking interface, (i.e., try_get is a function) we can guarantee that no time is consumed. If
there is a transaction available, we send it to the bus and change state. If there is no transaction
available, we stay in this state. WAIT_FOR_ACK simply waits for the ack from the slave and
then returns to WAIT_FOR_REQ.

Reset is handled very simply: whatever state we’re in, if we see a reset we return to
WAIT_FOR_REQ.

Finally, the convenience method, write_req_to_bus, actually sends the request to the bus. We
use these convenience functions partly to make the state machine design easier, and partly
because we may want to do error injection later.

84 virtual task write_request_to_bus(input request_t request);
85
86 pins_if.master_mp.req <= 1;
87 pins_if.master_mp.address <= request.m_address;
88
89 if(request.m_type == MEM_WRITE) begin
90 pins_if.master_mp.rw = 1;
91 pins_if.master_mp.wr_data = request.m_wr_data;
92 end
93 else begin
94 pins_if.master_mp.rw = 0;
95 end
file: topics/06_testbench_fundamentals/mem_svc/mem_driver.svh

Testbench Fundamentals: Memory with Independent Driver and Stim Generator

Advanced Verification Methodology Cookbook, 2.0 149
July 24, 2006

Testbench Fundamentals: Memory with Independent Driver and Stim Generator

SystemC Implementation Details

Driver Implementation
The SystemC implementation is more or less identical to the SystemVerilog implementation. It
too has a tlm_nonblocking_get_port at the transaction level and a master pin interface at the
RTL level.

34 class mem_master_if
35 {
36 public:
37 sc_in<bool> clk;
38 sc_in< bool > rst;
39
40 sc_out< ADDRESS_TYPE > address;
41 sc_out< DATA_TYPE > wr_data;
42 sc_in< DATA_TYPE > rd_data;
43 sc_out<bool> rw;
44 sc_out<bool> req;
45 sc_in<bool> ack;
46 sc_in<bool> err;
47 };
file: topics/06_testbench_fundamentals/mem_sc/mem_pin_if.h

In this particular example, we inherit the pin interface:

29 class mem_driver :
30 public sc_module ,
31 public mem_master_if
32 {
33 public:
34 sc_port< tlm_nonblocking_get_if< mem_request > > request_port;
35
36 SC_HAS_PROCESS(mem_driver);
37
38 mem_driver(sc_module_name);
file: topics/06_testbench_fundamentals/mem_sc/mem_driver.h
...
};

The state machine and convenience methods are very similar to the SystemVerilog:

32 void mem_driver::run() {
33
34 if(rst) {
35
36 cout << name() << “ mem_driver : doing reset “
37 << “ at “ << sc_time_stamp() << endl;
38
39 m_state = WAIT_FOR_REQ;
40 return;
41 }
42

Advanced Verification Methodology Cookbook, 2.0150

Testbench Fundamentals: Memory with Independent Driver and Stim Generator

July 24, 2006

43 switch(m_state) {
44 case WAIT_FOR_REQ :
45
46 if(request_port->nb_get(m_request)) {
47
48 cout << name() << “ Sending Request “ << m_request
49 << “ at “ << sc_time_stamp() << endl;
50
51 write_request_to_bus(m_request);
52
53 m_state = WAIT_FOR_ACK;
54 }
55 break;
56
57 case WAIT_FOR_ACK :
58
59 req = 0;
60
61 if(ack) {
62
63 read_response_from_bus(m_response);
64 m_state = WAIT_FOR_REQ;
65 }
66
67 break;
68 }
69
70 }
71
72 void mem_driver::
73 write_request_to_bus(const mem_request &request) {
74
75 req = 1;
76 address = request.m_address;
77
78 if(request.m_type == MEM_WRITE) {
79 rw = 1;
80 wr_data = request.m_data;
81 }
82 else {
83 rw = 0;
84 }
85
86 }
file: topics/06_testbench_fundamentals/mem_sc/mem_driver.cc

Testbench Fundamentals
Bi-directional Communication in Testbench

Advanced Verification Methodology Cookbook, 2.0 151
July 24, 2006

Testbench Fundamentals

Bi-directional Communication in Testbench

Figure 6-4. Bi-directional Communication in a Testbench

Description
Many bus protocols involve requests and responses. The master sends a request and then waits
for the response to come back from the slave. This example illustrates bi-directional
communication between the stimulus generator and the driver. The stimulus generator is
directed rather than random as in the previous examples, and the driver handles both requests
and responses.

Key Concepts
• Directed bi-directional stimulus generation.

• Bi-directional drivers that send requests to the bus and then sends responses back to the
stimulus generator.

• The use of a convenience layer in the stimulus generator to hide the details of the
communication from the test writer.

• Use of tlm_transport_if to model nonpipelined bi-directional communication.

• Use of tlm_transport_channel as a convenient replacement for two separate fifos.

mem_master mem_driver mem_dut

mem_monitor

Advanced Verification Methodology Cookbook, 2.0152

Testbench Fundamentals
Bi-directional Communication in Testbench

July 24, 2006

Testbench Fundamentals: Bi-directional Communication Example

Advanced Verification Methodology Cookbook, 2.0 153
July 24, 2006

Testbench Fundamentals: Bi-directional Communication Example

SystemVerilog Implementation Details

Constructing a Master
20 class mem_bidirectional_stimulus
21 #(int ADDRESS_WIDTH = 8 ,
22 int DATA_WIDTH = 8) extends avm_named_component;
23
24 typedef mem_request #(ADDRESS_WIDTH , DATA_WIDTH) request_t;
25 typedef mem_response #(DATA_WIDTH) response_t;
26
27 typedef bit[ADDRESS_WIDTH - 1:0] address_t;
28 typedef bit[DATA_WIDTH-1:0] data_t;
29
30 tlm_transport_if #(request_t , response_t) initiator_port;
31
32 function new(string name , avm_named_component parent = null);
33 super.new(name , parent);
34 endfunction
file:
topics/06_testbench_fundamentals/mem_svc/mem_bidirectional_stimulus.svh

The external connectivity of mem_bidirectional_stimulus is outlined above. In fact, the
external connectivity of this stimulus generator is very simple: it has a single
tlm_transport_if port. This is a task which takes a request as an input and a response as an
output. Since transport is a blocking call (i.e., a task) it takes as long as is necessary to
implement the entire transaction.

In order to make the tests easier to write, we define a convenience layer which hides the calls to
transport from the test writer:

51 task write(input address_t address , input data_t data);
52
53 request_t request = new(address , MEM_WRITE , data);
54 response_t response;
55 string write_str;
56
57 $sformat(write_str , “%d %d” , address , data);
58
59 avm_report_message(“about to do write” , write_str);
60 initiator_port.transport(request , response);
61 avm_report_message(“just done write” , write_str);
62
63 endtask
64
65 task read(input address_t address , output data_t data);
66
67 request_t request = new(address , MEM_READ);
68 response_t response;
69 string read_str;
70
71 $sformat(read_str , “ADDR = %d” , address);
72 avm_report_message(“about to do read”, read_str);

Advanced Verification Methodology Cookbook, 2.0154

Testbench Fundamentals: Bi-directional Communication Example

July 24, 2006

73
74 initiator_port.transport(request , response);
75 data = response.m_rd_data;
76
77 $sformat(read_str , “%d %d” , address , data);
78 avm_report_message(“just done read” , read_str);
79
80 endtask
file:
topics/06_testbench_fundamentals/mem_svc/mem_bidirectional_stimulus.svh

The convenience layer should be a set of functions that make sense for the protocol in question.
For this particular protocol, all we need define is read and write, but for other protocols we may
need a larger of set of functions including tasks such as burst_read and burst_write.

Then, we write the test itself:

36 task generate_stimulus(int write_count = 16 , int read_count = 16
);
37
38 address_t address;
39 data_t data;
40
41 for(address = 0; address < write_count; address++) begin
42 write(address , address + 17);
43 end
44
45 for(address = 0; address < read_count; address++) begin
46 read(address , data);
47 end
48
49 endtask
file:
topics/06_testbench_fundamentals/mem_svc/mem_bidirectional_stimulus.svh

This particular test does a fixed number of writes, followed by the same number of reads from
the same memory locations.

In a large organization, it might be that the verification infrastructure team write a base class
which has the transport port and the convenience layer, leaving the test writers to develop their
tests using the convenience layer in one or more subclasses of this base class.

The Internal Operation of tlm_transport_channel
The tlm_transport_channel contains a request and a response fifo. It exports all the put, get
and peek interfaces of the two fifos, as well as the master interfaces, which combine put request
with get and peek response and their mirror image the slave interfaces, which combine get and
peek request with put response.

It shares all these capabilities with its base class, tlm_req_rsp_channel. What makes
tlm_transport_channel unique is that it also implements the transport interface.

209 task transport(input REQ request , output RSP response);

Testbench Fundamentals: Bi-directional Communication Example

Advanced Verification Methodology Cookbook, 2.0 155
July 24, 2006

211 this.m_request_fifo.put(request);
212 this.m_response_fifo.get(response);
213 endtask

When transport(req,rsp) is called, it puts the request into the put fifo and blocks then waits
to get a response. This request in the fifo is then retrieved by the driver and applied to the bus.
Some time later the driver puts the response into the response fifo. Now the transport method
can unblock, get the response from the response fifo, and send it back to the stimulus generator.

Constructing a Bi-directional Driver
The blocking driver needs to get requests from the request fifo at the appropriate point in the
state machine and send them to the bus. It also needs to identify responses when they occur on
the bus and put these into the response fifo.

20 class mem_bidirectional_driver #(int ADDRESS_WIDTH = 8 ,
21 int DATA_WIDTH = 8)
22 extends avm_verification_component;
23
24 typedef mem_request #(ADDRESS_WIDTH , DATA_WIDTH) request_t;
25 typedef mem_response #(DATA_WIDTH) response_t;
26
27 typedef enum { WAIT_FOR_REQ , WAIT_FOR_ACK } state_e;
28
29 virtual mem_pins_if #(
30 .ADDRESS_WIDTH(ADDRESS_WIDTH) ,
31 .DATA_WIDTH(DATA_WIDTH)
32) pins_if;
33
34 tlm_nonblocking_get_if #(request_t) request_port;
35 tlm_nonblocking_put_if #(response_t) response_port;
36
37 function new(string nm , avm_named_component p = null);
38 super.new(nm , p);
39 endfunction
40 // ...
file:
topics/06_testbench_fundamentals/mem_svc/mem_bidirectional_driver.svh

The external connectivity of the blocking driver is shown above. The pin level interface, state
machine and request port are the same as in the unidirectional driver. The only difference is that
we have now added a response port. The modified state machine is shown below:

48 forever begin
49 @(posedge pins_if.master_mp.clk);
50
51 if(pins_if.master_mp.rst) begin
52 avm_report_message(“mem_driver” , “doing reset”);
53 state = WAIT_FOR_REQ;
54 continue;
55 end
56
57 case(state)
58 WAIT_FOR_REQ : begin

Advanced Verification Methodology Cookbook, 2.0156

Testbench Fundamentals: Bi-directional Communication Example

July 24, 2006

59
60
61 if(request_port.try_get(request)) begin
62
63 avm_report_message(“Sending Request” ,
64 request.convert2string());
65
66 write_request_to_bus(request);
67 state = WAIT_FOR_ACK;
68 end
69 end
70
71 WAIT_FOR_ACK : begin
72
73 pins_if.master_mp.req <= 0;
74
75 if(pins_if.master_mp.ack) begin
76
77 response = read_response_from_bus();
78
79 if(!response_port.try_put(response)) begin
80 avm_report_error(“mem_bidirectional_driver” ,
81 “Cannot put reponse”);
82 end
83
84 state = WAIT_FOR_REQ;
85 end
86
87 end
88 endcase
file:
topics/06_testbench_fundamentals/mem_svc/mem_bidirectional_driver.svh

In WAIT_FOR_ACK, we read the response from the bus and put it into the response fifo rather
than throwing it away. If the response fifo is full, we report an error, since the stimulus
generator has sent a request without getting the response. The convenience methods are the
same as shown in previous examples.

Testbench Fundamentals: Bi-directional Communication Example

Advanced Verification Methodology Cookbook, 2.0 157
July 24, 2006

Testbench Fundamentals: Bi-directional Communication Example

SystemC Implementation Details
In general, the architecture and implementation of the SystemC example is very similar to that
of the SystemVerilog code.

Constructing a Master
The header for the bi-directional stimulus generator is shown below:

28 class mem_bidirectional_stimulus : public sc_module {
29 public:
30 sc_port<
31 tlm_transport_if< mem_request , mem_response >
32 > initiator_port;
33
34 mem_bidirectional_stimulus(sc_module_name);
35
36 void generate_stimulus(int write_count = 16 , int read_count = 16
);
37
38 private:
39 void read(const ADDRESS_TYPE & , DATA_TYPE &);
40 void write(const ADDRESS_TYPE & , const DATA_TYPE &);
41
42 };
file:
topics/06_testbench_fundamentals/mem_sc/mem_bidirectional_stimulus.h

The sc_port defines the transport port. Generate_stimulus is the test controller’s access
point to start the test. Read and write are the convenience functions.

One point to notice about the SystemC implementation is that we could move the convenience
layer into a subclass of sc_port. This is what is done in the examples in the TLM kit available
from http://www.systemc.org.

The Internal Operation of tlm_transport_channel
The transport method in the SystemC implementation of tlm_transport_channel is similar to the
SystemVerilog:

RSP transport(const REQ &req)
{
 mutex.lock();

 request_fifo.put(req);
 rsp = response_fifo.get();

 mutex.unlock();
 return rsp;

 }

Advanced Verification Methodology Cookbook, 2.0158

Testbench Fundamentals: Bi-directional Communication Example

July 24, 2006

It performs both a put and a get as a single atomic operation. The function uses a mutex in order
to guarantee the atomicity of the transport operation. The mutex prevents another device from
accessing either the request_fifo or response_fifo until both the put and get are completed.

Constructing a Bi-directional Driver
30 class mem_bidirectional_driver :
31 public sc_module ,
32 public mem_master_if
33 {
34 public:
35 sc_port< tlm_nonblocking_get_if< mem_request > > request_port;
36 sc_port< tlm_nonblocking_put_if< mem_response > > response_port;
37
38 SC_HAS_PROCESS(mem_bidirectional_driver);
39
40 mem_bidirectional_driver(sc_module_name);
41
42 private:
43
44 enum state_e {
45 WAIT_FOR_REQ , WAIT_FOR_ACK
46 };
47
48 void run();
49
50 state_e m_state;
51 mem_request m_request;
52 mem_response m_response;
53
54 void write_request_to_bus(const mem_request &);
55 void read_response_from_bus(mem_response &);
56
57 };
file: topics/06_testbench_fundamentals/mem_sc/mem_bidirectional_driver.h

The SystemC implementation also has a blocking get port for the requests and a blocking put
port for the responses. The state machine is very similar to the SystemVerilog, doing an nb_get
to get the request and a nb_put to send the response back:

33 void mem_bidirectional_driver::run() {
34
35 if(rst) {
36
37 cout << name() << “ mem_driver : doing reset “
38 << “ at “ << sc_time_stamp() << endl;
39
40 m_state = WAIT_FOR_REQ;
41 return;
42 }
43
44 switch(m_state) {
45 case WAIT_FOR_REQ :
46
47 if(request_port->nb_get(m_request)) {
48

Testbench Fundamentals: Bi-directional Communication Example

Advanced Verification Methodology Cookbook, 2.0 159
July 24, 2006

49 cout << name() << “ Sending Request “ << m_request
50 << “ at “ << sc_time_stamp() << endl;
51
52 write_request_to_bus(m_request);
53
54 m_state = WAIT_FOR_ACK;
55 }
56 break;
57
58 case WAIT_FOR_ACK :
59
60 req = 0;
61
62 if(ack) {
63
64 read_response_from_bus(m_response);
65
66 if(!response_port->nb_put(m_response)) {
67 cout << name() << “ Cannot put response “ << m_response
68 << “ at “ << sc_time_stamp() << endl;
69
70 }
71
72 m_state = WAIT_FOR_REQ;
73 }
74
75 break;
76 }
77
78 }
file: topics/06_testbench_fundamentals/mem_sc/mem_bidirectional_driver.cc
}

Advanced Verification Methodology Cookbook, 2.0160

Testbench Fundamentals: Bi-directional Communication Example

July 24, 2006

Complete Testbenches

Advanced Verification Methodology Cookbook, 2.0 161
July 24, 2006

Chapter 7
Complete Testbenches

We have seen how to construct TLM components and how to build drivers and monitors. Real
testbenches need more than this. In this chapter, we put things together to construct testbenches
with a more realistic flavor. To make a testbench for production use we need to have analysis
components (components whose role it is to analyze what’s going on in the DUT), a way to
communicate with the analysis components, and a controller to orchestrate the whole operation.

The testbench structures that we have discussed so far are used in the operational domain of the
testbench. These control the operation of the DUT by supplying stimulus and response. To
make the testbench useful, we need to provide testbench components that analyze what is
happening in the operational domain in order to answer two questions: “Does it work?” and
“Are we done?”. These components belong to the analysis domain of the testbench.

Scoreboards are analysis components whose role is to answer the question “Does it work?”.
Scoreboards watch the stimulus and response of the DUT and make computations necessary to
determine if the stimulus and response are correct.

Coverage collectors are also analysis components. They answer the question “Are we done?”.
Coverage collectors compute coverage based on the stimulus and response traffic going to and
from the DUT.

Advanced Verification Methodology Cookbook, 2.0162

Complete Testbenches

July 24, 2006

Complete Testbenches
Scoreboard

Advanced Verification Methodology Cookbook, 2.0 163
July 24, 2006

Complete Testbenches

Scoreboard

Figure 7-1. Testbench with Scoreboard

Description
A scoreboard is a verification component whose role is to determine whether or not the DUT
functions correctly. Scoreboards, well, keep score. Whereas a golden model must completely
mimic the operation of the DUT, a scoreboard tracks the activity by collecting data necessary to
compute a metric or tally activity. For example, in a packet-based communication system, a
scoreboard might be used to match output packets with input packets. The scoreboard answers
the question “Does it work?”.

The parallel-to-serial design, which we refer to as the p2s DUT, takes a parallel word and
converts it to a serial stream of bits. The stimulus generator sends a stream of words to the
driver which clocks them into the p2s DUT. The driver also supplies the stream of words to the
scoreboard via an analysis port. The bit monitor, which is connected to the output bit stream
reconstructs the stream of bits into streams of words.The in-order comparator compares the
stream of input words that come from the driver to the stream of output words which come from
the monitor. If everything works properly, the two streams should be identical.

Key Concepts
• The transactors (driver and monitor) use analysis ports to communicate with the

scoreboard.

• The scoreboard is an untimed transaction level component which serves as a reference.
It is responsible for determining whether the DUT worked properly by examining the
input and output streams.

Driver
Parallel-to-serial

DUT

Stimulus
generator

Monitor

scoreboard
in-order

comparator
analysis port

Advanced Verification Methodology Cookbook, 2.0164

Complete Testbenches
Scoreboard

July 24, 2006

Analysis ports
As the test proceeds, we need to capture the activity of the DUT, transactors, and environment
objects in the operational domain in order to analyze it. We don’t want to interrupt or interfere
with the operation of the DUT or environment components and we want to make sure that we
collect data at the time it’s generated. Analysis ports are a means to do this.

Analysis ports are organized as a publisher object and a set of subscriber objects. The
subscribers register themselves with the publisher. When the publisher has some new data to
publish it notifies all the subscribers.

Figure 7-2. Analysis Port Organization

Before the test begins, each subscriber must register itself with the publisher and the publisher
maintains a list of subscribers. At some time during its operation the device that owns the
analysis port calls write(), passing in a transaction object. The analysis port forwards the write
call to each subscriber, passing a copy of the transaction object.

The write() interface function must never block when it’s called. If write() blocked, then it
might interfere with the operation of the monitor. Also, it’s important that the analysis devices
receive data in the same delta cycle where the write() call was made. Analysis fifos ensure
these characteristics hold. An analysis fifo is a TLM fifo whose size is unbounded and has a
write() interface, instead of the usual put and get interfaces. By having the subscriber of an
analysis port be an unbounded fifo, we can guarantee that it will never fill up in a single delta
cycle and block and that the analysis component can access all the transactions sent in the same
delta cycle.

A typical use of analysis ports, as we see in this example, is to communicate from a monitor to a
scoreboard. The monitor, upon recognizing a complete transaction sends a transaction object to
whatever analysis component that are connected to it via an analysis port.

Scoreboards
The role of a scoreboard is to determine if the DUT functions correctly. A scoreboard taps off
the transaction streams that form the inputs and outputs of the DUT. It can then compute the

publisher

subscriber[2] subscriber[1] subscriber[0]

monitor

sub[0]
sub[1]
sub[2]

analysis_if

write(tr)

analysis_if

write(tr)

analysis_if

write(tr)

write(tr)

analysis_port

Complete Testbenches
Scoreboard

Advanced Verification Methodology Cookbook, 2.0 165
July 24, 2006

outputs from the inputs and determine if its computed output is the same as the output
transaction received from the DUT.

The scoreboard in this sequence of examples is an in-order comparator. It accepts two streams
of transactions, the before stream and the after stream. For each transaction pulled from the after
stream, it pulls a transaction from the before stream and compares the two to see if they are
equivalent. The in-order comparator is so named because it assumes that transactions in the two
streams being compared are in the same order.

Figure 7-3. Organization of the in_order_comparator

The in-order comparator has an analysis fifo on each input. The comparator process waits until
a transaction appears in the after fifo. When it does, it gets the next transaction from the before
fifo. SystemC uses operator==() to compare the two transactions (which, of course, must be
of the same type). SystemVerilog uses the comparison policy, either the built-in (for built-in
types such as float and int) or the class comparator (for user defined class objects).

in_order_comparator
before after

analysis fifo

Advanced Verification Methodology Cookbook, 2.0166

Complete Testbenches
Scoreboard

July 24, 2006

Complete Testbenches: Scoreboard Example

Advanced Verification Methodology Cookbook, 2.0 167
July 24, 2006

Complete Testbenches: Scoreboard Example

SystemVerilog Class-Based Implementation Details
The analysis port and the in-order comparator are new in this chapter, so we’ll focus on the
implementation details of these components.

Analysis Port
In this section, we’ll look at how an analysis port is used in the monitor, and how it is connected
to the scoreboard, which in this case is the in-order comparator.

23 analysis_port #(p2s_transaction) ap;
24 virtual p2s_pins_if #(.DATA_SIZE(1)) m_bus_if;
25
26 function new(string name , avm_named_component parent = null);
27 super.new(name , parent);
28 ap = new;
29 endfunction
file:
topics/07_complete_testbenches/p2s_transactors_svc/p2s_bit_monitor.svh

This code fragment shows the declaration of the two interfaces on the bit monitor and its
constructor. The first declaration declares an analysis port of type p2s_transaction. That
means that the analysis port can be used to send objects of type p2s_transaction. The second
declaration is a virtual interface being bound to a real interface containing the pins this device is
monitoring. The constructor creates an instance of the analysis port using the new operator.

53 if(byte_index == 8) begin
54 transaction = new;
55
56 transaction.data = b;
57
58 ap.write(transaction);
59
60 avm_report_message(“seen byte” , transaction.convert2string
);
61 byte_index = 0;
62 end
file:
topics/07_complete_testbenches/p2s_transactors_svc/p2s_bit_monitor.svh

The business part of the monitor, shown in the fragment above, collects up a byte’s worth of
bits, puts the byte into a new’ed transaction object, and sends it through the analysis port to the
in-order comparator.

In-Order Comparator
The in-order comparator, which is a standard component in the AVM library, compares two
streams of transactions under the assumption that the two streams are in the same order. It’s a
parameterized component with several parameters. The first one (and in most cases the only one
that you need to supply) is T, the type of the objects to compare. The remaining three

Advanced Verification Methodology Cookbook, 2.0168

Complete Testbenches: Scoreboard Example

July 24, 2006

parameters, comp, convert, and pair_type, are policy classes, which supply additional
functionality to the in_order_comparator. Comp defines how comparisons are made; convert
converts objects of type T to string for printing; and pair_type defines a pair object which
contains two distinct instances of type T. For most applications you can use the default policies,
as we do in this example.

42 class avm_in_order_comparator
43 #(type T = int ,
44 type comp = avm_built_in_comp #(T) ,
45 type convert = avm_built_in_converter #(T) ,
46 type pair_type = avm_built_in_pair #(T))
47 extends avm_named_component;
48
49 // The two exports. Actually, there are no assumptions made about
50 // ordering, so it doesn’t matter which way around you make the
51 // connections
52
53 analysis_if #(T) before_export , after_export;
54
55 analysis_port #(pair_type) pair_ap;
56
57 local analysis_fifo #(T) before_fifo , after_fifo;
file: utilities/systemverilog/avm/utils/avm_in_order_comparator.svh

After the component header comes the declaration of the major objects used in this component.
Before_export and after_export are analysis interfaces, the connections from the
analysis_fifo channels to the outside world. Before_fifo and after_fifo are analysis fifos
used to buffer the incoming streams. Pair_ap is an analysis port used to send out each pair of
objects that have been compared. The comparator pulls an object from the after_fifo and one
from the before_fifo to construct a pair. The pair is sent to downstream components via the
pair_ap analysis port. Having a stream of pairs is useful for downstream components to be able
to access pairs for further analysis or display. For example, if the elements of the pair are not
equal, you might want to print a message or do further analysis to determine which specific
members are not equal.

Complete Testbenches: Scoreboard Example

Advanced Verification Methodology Cookbook, 2.0 169
July 24, 2006

Complete Testbenches: Scoreboard Example

SystemVerilog Module-Based Implementation Details
In the module based variant of this example, the components -- DUT, drivers, monitors, etc., are
all constructed as modules. The channels are still implemented using classes.

The analysis fifos are derived from avm_verification_component, so when the constructor is
called we need to supply a name for each one.

59 analysis_fifo #(p2s_transaction) before_fifo =
new(“before_fifo”);
60 analysis_fifo #(p2s_transaction) after_fifo = new(“after_fifo”);
61
62 analysis_fifo #(
63 avm_class_pair #(p2s_transaction)
64) pair_fifo = null;
65
66 tlm_fifo #(p2s_transaction) request_fifo = new(“request_fifo”);
file: topics/07_complete_testbenches/01_scoreboard_svm/top.sv

The module instantiations use familiar Verilog syntax. SystemVerilog lets us put a class
reference in a port list. This provides the connection between the module and the channels,
which are classes.

69 p2s_stimulus_mod stimulus(.request_fifo(request_fifo));
70
71 p2s_driver_mod driver(.request_fifo(request_fifo) ,
72 .master_mp(input_bus.master_mp));
73
74
75 p2s_bit_monitor_mod bit_monitor(.af(after_fifo) ,
76 .monitor_mp(
output_bus.monitor_mp));
77
78 avm_in_order_class_comparator_module #(p2s_transaction)
79 comp(.before_fifo(before_fifo) ,
80 .after_fifo(after_fifo) ,
81 .pair_fifo(pair_fifo));
file: topics/07_complete_testbenches/01_scoreboard_svm/top.sv

In this example, we do not use proper analysis ports, we just use analysis fifos. We can do this
when we know there will only be one subscriber. The avm_analysis_port object is based on
the observer pattern, an object oriented design pattern that allows a single publisher to notify
and transmit data to multiple subscribers. In the case where there is only one subscriber, the
extra machinery used to register subscribers and notify them individually when new data is
ready to be published is not necessary.

Instead, we just use analysis fifos. Analysis fifos are unbounded and have the same write()
interface as analysis ports. We connect analysis fifos between components just as we would
other channels. When we do this, we have to take one little precaution:

Advanced Verification Methodology Cookbook, 2.0170

Complete Testbenches: Scoreboard Example

July 24, 2006

57 if(af != null) af.write(transaction);

Before writing to the analysis fifo we need to make sure that an analysis fifo has indeed been
connected to our module. A simple check to see if the analysis fifo reference is null
accomplishes this task.

Complete Testbenches: Scoreboard Example

Advanced Verification Methodology Cookbook, 2.0 171
July 24, 2006

Complete Testbenches: Scoreboard Example

SystemC Implementation Details

Analysis Ports
An analysis port in SystemC performs the same function as analysis ports in SystemVerilog, but
their implementation is a little different. Analysis_port<T> is a specialization of sc_port<T>
with T = analysis_if. Analysis_if is a simple pure virtual interface class containing the
single function write():

33 template < typename T >
34 class analysis_if : public virtual sc_interface
35 {
36 public:
37 virtual void write(const T &) = 0;
38 };

The specialized sc_port object contains a list of analysis proxies, objects that also inherit from
analysis_if and supply an implementation of write(). When you bind to an analysis port, it
creates a new proxy object and adds it to its list. This replaces the explicit registration function
required in SystemVerilog analysis ports.

When you call write() on the analysis port, it forwards that call to each of the proxies it has in
its list. Each of the proxies, which represent the subscribers, call write() on the interface to
which it is bound. The result is the same observer pattern used on the SystemVerilog side.
Instead of a special registration function, analysis ports specialize sc_port<T> and overload
bind() to add a new entry to a list of proxies each time it is called. Subscribers use the usual
bind syntax to connect to an analysis port instead of a special registration function.

In-Order Comparator
The in-order comparator, like its SystemVerilog counterpart, has two analysis fifos: a before
fifo and an after fifo. It pulls a transaction from both the before fifo and after fifo, and compares
them using operator==(). If the comparator object type is a scalar type, int float, etc., the
default operator== is fine. If the comparator type is a class that contains anything other than
scalar types (including pointers, vectors, etc.), we recommend you provide an explicit
operator== and not rely on the default one supplied by the compiler.

Controller and Stimulus Generator
In the SystemC version of this series of examples, we use a separate controller component. The
controller owns the main thread of control through the testbench. For this example, it starts and
stops the stimulus generator. The controller is a straightforward device, it has a thread and a
start_stop_port. The start_stop_port is bound to the stimulus generator providing a way
to start and stop the stimulus generators

12 class controller : public sc_module
13 {

Advanced Verification Methodology Cookbook, 2.0172

Complete Testbenches: Scoreboard Example

July 24, 2006

14 public:
15 controller(sc_module_name nm) :
16 sc_module(nm)
17 {
18 SC_THREAD(main_thread);
19 }
20 SC_HAS_PROCESS(controller);
21
22 sc_port<start_stop_config_if> start_stop_port;
23
24 private:
25 void main_thread();
26 };
file: topics/07_complete_testbenches/01_scoreboard_sc/controller.h

The controller process class start() causes the stimulus generator to begin operation, waits for
1000ns, and finally calls stop(), causing the stimulus generator to cease operation.

25 void controller::main_thread()
26 {
27 start_stop_port->start();
28 wait(1000, SC_NS);
29 start_stop_port->stop();
30 }
file: topics/07_complete_testbenches/01_scoreboard_sc/controller.cc

The start_stop_config_if is a pure virtual interface which specifies the start and stop
functions. The controller calls these functions and the stimulus generator provides an
implementation.

27 class start_stop_config_if : public virtual sc_interface
28 {
29 public:
30 virtual void start() = 0;
31 virtual void stop() = 0;
32 };
file: utilities/systemc/avm/avm_config/start_stop_if.h

The stimulus generator has two connections to the outside world: a start_stop_export, which
will be bound to the start_stop_port on the controller, and a transaction put port, p. The put
port is used to send transactions to the driver.

33 class random_stimulus :
34 public sc_module,
35 public start_stop_config_if
36 {
37 public:
38 random_stimulus(sc_module_name);
39
40 sc_port< tlm_blocking_put_if<word_t> > p;
41
42 sc_export<start_stop_config_if> start_stop_export;
43
44 SC_HAS_PROCESS(random_stimulus);
45

Complete Testbenches: Scoreboard Example

Advanced Verification Methodology Cookbook, 2.0 173
July 24, 2006

46 private:
47 void run();
48 void start();
49 void stop();
50
51 bool go;
52 sc_event start_event;
53 };
file: topics/07_complete_testbenches/p2s_sc/random_stimulus.h

Notice that the stimulus generator has a private event called start_event. The function run is a
SystemC thread and will start immediately at time 0. We may or may not want the stimulus
generator to start at this time. We want to keep the stimulus generator under control of the start
and stop functions.

64 cout << sc_time_stamp() << “: waiting for start event...” << endl;
65 wait(start_event);
66
67 while(go)
68 {
69 w->next();
70 word_t val = *w.get_value();
71 p->put(val);
72 cout << sc_time_stamp() << “: “ << name()
73 << “ done sent : “ << setw(2) << hex << val << endl;
74 }
file: topics/07_complete_testbenches/p2s_sc/random_stimulus.cc

When the process begins it first waits for start_event to trigger. The function start() calls
start_event.notify(), which releases the wait and begins the stimulus generation loop.
Stop() turns off the go bit which turns off the stimulus generator after it finishes the current
iteration.

Advanced Verification Methodology Cookbook, 2.0174

Complete Testbenches: Scoreboard Example

July 24, 2006

Complete Testbenches
Coverage

Advanced Verification Methodology Cookbook, 2.0 175
July 24, 2006

Complete Testbenches

Coverage

Figure 7-4. Coverage in a Testbench

Description
This step in the process of moving toward real testbenches introduces coverage and coverage
feedback. In the previous example we saw a trivial test controller. Here, we give it more power.

The coverage collector is connected to the output of the monitor via an analysis port just like the
scoreboard. Each transaction produced by the monitor is sent to the coverage collector as well
as to the scoreboard. The coverage collector counts the transactions that it sees. The purpose of
the coverage collector is to answer questions in the class of “Are we done?”.

Key Concepts
• Coverage is a means of answering “Are we done?” questions. Coverage collectors

analyze data from transactors to generate information which can be used to answer these
questions.

• The stimulus generator has a configuration interface which is used to start and stop its
operations.

Driver
Parallel-to-serial

DUT

Stimulus
generator

Monitor

scoreboard
in-order

comparator

coverage
collector

test controller

Advanced Verification Methodology Cookbook, 2.0176

Complete Testbenches
Coverage

July 24, 2006

• Test controllers are the decision makers in a testbench. Test controllers start and stop the
simulator and use information from coverage collectors to make decisions about what to
do.

Coverage and Coverage Collectors
The key idea behind coverage is to count the occurrence of various kinds of events within a
finite space. The ratio of unique things counted to the number of elements in the space is the
percentage of coverage. Let’s say, for example, we wanted to cover an address space. To
compute coverage we would need a way to increment a counter each time an address is accessed
that had not been accessed previously. When the test completes we compute the coverage by
dividing the size of the address space into the counter. If our address space has 255 unique
addresses and we have touched 147 of them during the test, we can say coverage is 147/256
which is about 68%.

Coverage collectors are the means to store counters and compute coverage. What it is they
count is determined by the test plan, by what you need to know to determine if you’ve done
enough testing. If you’re verifying a microprocessor you may want to count instructions. If
you’re verifying a router you may want to know when all possible paths have been travelled by
at least one packet. And so on. The act of obtaining a new datum to count is called sampling.

Besides just counting things you may want to count things by category or bin. This is called
binning. To perform binning you create multiple counters, one for each bin. During simulation a
function determines which bin should be incremented each time a sample is taken.

Complete Testbenches: Coverage Example

Advanced Verification Methodology Cookbook, 2.0 177
July 24, 2006

Complete Testbenches: Coverage Example

SystemVerilog Implementation Details
The coverage collector uses coverage facilities built in to the SystemVerilog language.
Coverpoints and covergroups are a feature of SystemVerilog designed to collect and process
coverage data. The covergroup at the heart of our coverage collector is called byte_cov.

24 covergroup byte_cov;
25 top_four : coverpoint data[7:4];
26 bottom_four : coverpoint data[3:0];
27 endgroup
file:
topics/07_complete_testbenches/p2s_transactors_svc/p2s_byte_coverage.svh

It has two coverpoints, top_four and bottom_four. Each is a four-bit nibble. The coverpoint
top_four contains the top four bits of a byte, and bottom_four contains the bottom four bits.
Each coverpoint is a bin. When the covergroups are sampled, the sample data is binned into the
two bins.

29 function new(string name , avm_named_component parent = null);
30 super.new(name , parent);
31
32 byte_cov = new;
33 m_is_covered = 0;
34 endfunction
file:
topics/07_complete_testbenches/p2s_transactors_svc/p2s_byte_coverage.svh

The constructor creates an instance of the covergroup using the new operator.

The monitor uses an analysis port to transfer information to the coverage collector. The analysis
port will call write() in each subscriber and pass it a transaction. As a subscriber to an analysis
port, the coverage collector must provide an implementation of write(). The write() function
for this coverage collector does three things:

1. It copies data from the transactor into a data object known by the covergroup.

2. It calls sample.

3. It computes whether or not coverage has crossed the threshold for completeness.

If the coverage threshold has been reached, then m_is_covered is set to 1.

36 function void write(input p2s_transaction t);
37 data = t.data;
38 byte_cov.sample;
39
40 if(byte_cov.get_inst_coverage > 95) begin
41 m_is_covered = 1;
42 end
43 endfunction

Advanced Verification Methodology Cookbook, 2.0178

Complete Testbenches: Coverage Example

July 24, 2006

file:
topics/07_complete_testbenches/p2s_transactors_svc/p2s_byte_coverage.svh

The controller knows when the coverage threshold has been reached by watching
m_is_covered.

Complete Testbenches: Coverage Example

Advanced Verification Methodology Cookbook, 2.0 179
July 24, 2006

Complete Testbenches: Coverage Example

SystemVerilog Module-Based Implementation Details
The module-based implementation of a coverage collector uses covergroups and coverpoints
just as the class-based implementation does

32 covergroup byte_cov;
33 top_four : coverpoint data[7:4];
34 bottom_four : coverpoint data[3:0];
35 endgroup
file:
topics/07_complete_testbenches/p2s_transactors_svm/p2s_byte_coverage_mod.
sv

The main loop of the coverage collector works a bit differently. Instead of implementing a
write() function directly, the loop reads from an analysis fifo, af.

39 initial begin
40 m_byte_cov = new;
41 m_is_covered = 0;
42
43 forever begin
44 af.get(t);
45
46 data = t.data;
47 m_byte_cov.sample;
48
49 if(m_byte_cov.get_inst_coverage > 95) begin
50 m_is_covered = 1;
51 end
52 end
53 end
file:
topics/07_complete_testbenches/p2s_transactors_svm/p2s_byte_coverage_mod.
sv

The af.get(t) call is blocking. That is, if there is nothing in the analysis fifo to get, it will wait
until there is. Once an item appears in the fifo, the rest of the loop performs the same
calculations as its class-based counterpart.

The testbench is controlled by a pair of processes forked in the initial block in the module top.

101 fork
102 begin
103 stimulus_process = process::self;
104 stimulus.generate_stimulus;
105 end
106 terminate_when_covered;
107 join
108
109 $finish;
file: topics/07_complete_testbenches/02_coverage_svm/top.sv

Advanced Verification Methodology Cookbook, 2.0180

Complete Testbenches: Coverage Example

July 24, 2006

The first process is bracketed by begin/end. It first requests the handle to itself and then starts
the stimulus generator running. The stimulus generator is free running: it will not stop on its
own. So, the first process will keep running until it is explicitly killed. The second process,
terminate, waits until coverage reaches the predetermined threshold and then stops the stimulus
generator.

113 task terminate_when_covered;
114 wait(byte_coverage.m_is_covered);
115 stimulus_process.kill;
116 avm_report_warning(“terminate_when_covered” , ““);
117 endtask
file: topics/07_complete_testbenches/02_coverage_svm/top.sv

The statement stimulus_process.kill uses fine-grained process control to stop the stimulus
generator. The call to kill stops the process whose handle is stimulus_process, the first of the
two processes created in the fork/join block. The terminate task knows that the coverage
threshold has been reached when the m_is_covered bit inside the coverage collector changes
state.

Complete Testbenches: Coverage Example

Advanced Verification Methodology Cookbook, 2.0 181
July 24, 2006

Complete Testbenches: Coverage Example

SystemC Implementation Details
Coverage collectors in SystemC are based on the AVM-supplied coverpoint<T,N> class. The
coverpoint template takes two arguments. The first, T, is the type of the object to cover, and the
second, N, is the number of bins to create in the coverpoint.

12 class word_coverpoint : public coverpoint<word_t, 4>
13 {
14 public:
15 word_coverpoint(sc_module_name nm) :
16 coverpoint<word_t, 4>(nm)
17 {}
18
19 private:
20 int sort(const word_t& w) const
21 {
22 // return low order 2 bits
23 return (w & 0x3);
24 }
25 };
file: topics/07_complete_testbenches/p2s_sc/word_coverage.h

Coverpoints are connected via analysis ports and therefore must provide a write() function.
The write function takes objects of type T and calls sort on them to determine in which bin they
belong. The sort function, whose argument must also be of type T, returns an integer between 0
and N-1 indicating which bin to increment.

Advanced Verification Methodology Cookbook, 2.0182

Complete Testbenches: Coverage Example

July 24, 2006

Complete Testbenches
Generating Errors

Advanced Verification Methodology Cookbook, 2.0 183
July 24, 2006

Complete Testbenches

Generating Errors

Figure 7-5. Testbench with Error Driver

Description
Part of properly verifying a design is to be able to demonstrate that it handles errors properly.
The testbench must inject errors at the appropriate place and time, as well as determine if the
error was processed in the expected manner by the DUT.

In this example, we employ two coverage collectors: one to count words, as in the previous
example, and the other to count errors. When the error driver injects an error it sends the correct
data to the scoreboard and the error data to the DUT. The scoreboard registers an unsuccessful
comparison when the error data and good data are compared. When such a condition occurs, the
scoreboard notifies the error coverage collector which counts errors.

Key Concepts
• An error driver is built by inheriting from (or extending) a non-error driver.

Error
Driver

Parallel-to-serial
DUT

Stimulus
generator

Monitor

scoreboard
in-order

comparator

coverage
collector

test controller

coverage
collector

Advanced Verification Methodology Cookbook, 2.0184

Complete Testbenches
Generating Errors

July 24, 2006

• The test controller is modified to set parameters on the error driver which govern how
and when errors are generated.

• Since the error driver will send bad data to the DUT, the DUT will likely respond in a
way to indicate that it recognized and/or processed the error. The scoreboard must be
aware of this and communicate to the test controller that errors were received.

• The test controller responds to two coverage collectors, one that counts transactions and
the other that counts errors.

Constructing an Error Driver
The essential technique for constructing an error driver is to inherit it from a non-error driver
and re-implement certain virtual methods so they cause errors to be injected. Using inheritance
avoids rewriting complex code for the protocol state machine(s). In addition, the error driver
exports a configuration interface which provides external control over the error injection.

Consider the pseudo-code for a typical driver:

do forever
{

transaction = fifo.get();
send_to_bus(transaction);

}

The driver loops forever, pulling transactions from an input fifo. Each transaction is processed
to run the protocol state machine which causes pin changes. This is a little simplistic, in a real
protocol, the FSM is also sensitive to changes in input pins and needs to respond accordingly.
Nonetheless, this simple driver structure can be used to illustrate natural ways to create an error
driver from a non-error driver. One way would be to insert a function that massages the
transaction before calling send_to_bus();

do forever
{

transaction = fifo.get();
inject_error(transaction);
send_to_bus(transaction);

}

The inject_error function is virtual. In the non-error driver it does nothing; in the error driver
it is overloaded to modify the transaction in some error-injecting way. The problem is that for
non-error applications the inject-error function isn’t used, it incurs a tiny amount of overhead,
and clutters the driver code.

Another possible solution to error injection is to code the error modifications into the
transaction object itself.

do forever
{

transaction = fifo.get();

Complete Testbenches
Generating Errors

Advanced Verification Methodology Cookbook, 2.0 185
July 24, 2006

transaction.inject_error();
send_to_bus(transaction);

}
One drawback of using this method is that it requires he main loop of the driver to be
overloaded in the error driver. For a loop as simple as the one in our example this is not really an
issue. In anything more complex, it can be a big problem: requiring duplicate code, containing
subtle nuances, bugs, and idiosyncrasies. This would reduce the viability of the error driver.
There would be no way to tell if the difference between a “clean” simulation and one where
errors are due to just the injected errors or due to subtle variations in the operation of the driver
itself.

A third way, and the way we’ve chosen to demonstrate in our example, is to overload
send_to_bus(). The version of send_to_bus in the derived error driver modifies the data as it
prepares it for sending to the bus. To make sure that the send_to_bus semantics are preserved
and to avoid re-coding a potentially complex function, the error version of send_to_bus calls
the same function in the parent class. In SystemVerilog this is done using the super reference
and in SystemC using a fully qualified name (with the :: operator) to bind to the correct
function.

Advanced Verification Methodology Cookbook, 2.0186

Complete Testbenches
Generating Errors

July 24, 2006

Complete Testbenches: Generating Errors

Advanced Verification Methodology Cookbook, 2.0 187
July 24, 2006

Complete Testbenches: Generating Errors

SystemVerilog Class-Based Implementation Details
In the non-error driver, the send_transaction_to_bus function does the heavy lifting. It
converts an individual transaction to a sequence of pin wiggles. The same is true in the error
driver. Our error driver uses some additional information to determine when to inject an error.
Error_length specifies the number of transactions between errors. Error_count records the
number of transactions since the last error. When error_count is equal to error_length, it is
time to inject another error.

40 virtual task send_transaction_to_bus(
41 input p2s_transaction transaction
42);
43
44 string error_str;
45 p2s_transaction temp_transaction = transaction.clone;
46
47 if(m_error_length != 0) begin
48 m_error_count++;
49
50 if(m_error_count == m_error_length) begin
51
52 temp_transaction.data[0] = !temp_transaction.data[0];
53
54 $sformat(error_str ,”%s -> %s” ,
55 transaction.convert2string ,
56 temp_transaction.convert2string);
57
58 avm_report_warning(“error injection” , error_str);
59 m_error_count = 0;
60 end
61 end
62
63 super.send_transaction_to_bus(temp_transaction);
64 endtask
file:
topics/07_complete_testbenches/p2s_transactors_svc/p2s_error_driver.svh

Note that the send_transaction_to_bus task is virtual. It can be further overloaded by
another error driver, if desired.

The first part of the function asks if it is time to inject an error. If it is, then it makes a simple
modification to the word being sent, it inverts it.

At the end of the task, a call is made to the parent class version of send_transaction_to_bus.
This provides the functionality necessary to convert a transaction to pin activity. By calling the
task in the parent class we avoid having to re-code this function in the error driver.

Advanced Verification Methodology Cookbook, 2.0188

Complete Testbenches: Generating Errors

July 24, 2006

Complete Testbenches: Generating Errors

Advanced Verification Methodology Cookbook, 2.0 189
July 24, 2006

Complete Testbenches: Generating Errors

SystemVerilog Module-Based Implementation Details
Inheritance is not available in the module based form, at least not the kind that you use in the
world of classes. We want to reuse the error driver to avoid re-coding it. We can accomplish this
simply by instantiating the non-error driver inside the error driver and adding other pieces that
modify the transaction stimulus.

Figure 7-6. Error driver constructed from a non-error driver

This is a form of static inheritance. We inherit the functionality of the non-error driver to build
the error driver, using the HAS-A relationship instead of the IS-A relationship.

An additional process at the front end of the driver gets transactions from the input and modifies
their contents:

35 initial begin
36 m_error_count = 0;
37 set_error_length(0);
38
39 forever begin
40 request_fifo.get(transaction);
41 temp_transaction = transaction.clone();
42
43 if(m_error_length != 0) begin
44 m_error_count++;
45
46 if(m_error_count == m_error_length) begin
47
48 temp_transaction.data[0] = !temp_transaction.data[0];
49
50 $sformat(error_str ,”%s -> %s” ,
51 transaction.convert2string ,
52 temp_transaction.convert2string);
53
54 avm_report_warning(“error injection” , error_str);
55 m_error_count = 0;
56 end
57 end
58

error
injector
process

non-error
driver

error driver

internal fifo

Advanced Verification Methodology Cookbook, 2.0190

Complete Testbenches: Generating Errors

July 24, 2006

59 internal_fifo.put(temp_transaction);
60 end
61 end
file:
topics/07_complete_testbenches/p2s_transactors_svm/p2s_error_driver_mod.s
v

The structure of the initial block is much the same as the send_transaction_to_bus task that
we saw in the class-based implementation. The key difference is the internal_fifo.put()
call at the end of the forever loop. This sends the modified transaction to the subordinate non-
error driver.

Complete Testbenches: Generating Errors

Advanced Verification Methodology Cookbook, 2.0 191
July 24, 2006

Complete Testbenches: Generating Errors

SystemC Implementation Details
In character, the SystemC implementation works much like the SystemVerilog class-based
implementation, although, of course, some of the syntactic details are different.

28 class error_word_driver :
29 public word_driver,
30 public error_word_driver_config_if
31 {
32 public:
33 error_word_driver(sc_module_name nm, int b = 1, int w = 4, int e =
0) :
34 word_driver(nm, b, w),
35 m_error_length(e),
36 m_error_count(0)
37 {}
38
39 void set_error_length(int);
40 void get_error_length(int&);
41
42 private:
43 virtual void send_transaction_to_bus(word_t t);
44
45 int m_error_length;
46 int m_error_count;
47 };
file: topics/07_complete_testbenches/p2s_sc/error_word_driver.h

The error driver declaration inherits from word_driver, the non-error driver. It also inherits
from error_word_driver_config_if, which contains the declarations for the error control
functions, set_error_length(), and get_error_length(). The error driver also provides an
implementation for the virtual function send_transaction_to_bus().

41 void error_word_driver::send_transaction_to_bus(word_t t)
42 {
43 if(m_error_length != 0)
44 {
45 m_error_count++;
46
47 if(m_error_count == m_error_length)
48 {
49 word_t u = t;
50 t = ~t;
51
52 cout << sc_time_stamp() << “: “ << name()
53 << “: injecting error: changed from “
54 << u << “ to “ << t << endl;
55
56 m_error_count = 0;
57 }
58 }
59
60 word_driver::send_transaction_to_bus(t);

Advanced Verification Methodology Cookbook, 2.0192

Complete Testbenches: Generating Errors

July 24, 2006

61 }
file: topics/07_complete_testbenches/p2s_sc/error_word_driver.cc

Exactly when send_transaction_to_bus injects an error is controlled by the error length
which can be set by set_error_length. Error_length is the number of transactions between
errors. Error_count is the number of transactions since the last error. When error_length is
equal to error_count, it is time to inject a new error.

Whether an error is injected or not, the final action of the loop is to call
word_driver::send_transaction_to_bus. Word_driver is the parent class for
error_word_driver (i.e. the class from which error_word_driver is derived). The parent’s
version of send_transaction_to_bus takes the transaction and converts it to pin level
activity. By reusing the function in the parent class, we avoid having to re-code it which can
lead to potential (and inadvertent) subtle differences in the semantics.

Stepwise Refinement

Advanced Verification Methodology Cookbook, 2.0 193
July 24, 2006

Chapter 8
Stepwise Refinement

Stepwise refinement is the process of taking a high level design and, through various
transformations and substitutions, move it to a detailed implementation. In a top-down flow, the
first incarnation of the design is built at the transaction level. A TLM enables designers to
understand the general characteristics of the device such as performance and throughput. The
device will have a testbench that captures and analyzes data necessary to determine these
characteristics.

In a large design it’s often the case that all of the RTL is not finished at once. It’s desirable to
substitute portions of the TLM with RTL components as they become available. Performing this
kind of substitution requires that transactors be inserted to connect transaction level components
to pin level components.

A testbench for a TLM will have the “Are we done?” aspects of the testbench, but not the “Does
it work?” aspects. The reason is that there is not another implementation to compare against.
The determination of does it work is done by other means besides comparing results against an
RTL model.

Creating stimulus generators (or masters and slaves) at the transaction level is a non-trivial task,
so it’s important to be able to reuse them to whatever extent possible. In this series of examples,
we will show how to do just that. We will show how to reuse a stimulus generator in moving
from a TLM to an RTL implementation. We’ll also show how to reuse the TLM as a golden
model and compare results between it and the RTL model at run time.

Advanced Verification Methodology Cookbook, 2.0194

Stepwise Refinement

July 24, 2006

Stepwise Refinement
Transaction Level FPU

Advanced Verification Methodology Cookbook, 2.0 195
July 24, 2006

Stepwise Refinement

Transaction Level FPU

Figure 8-1. Testbench for a Transaction-level FPU

Description
The transaction level model of a floating point unit (FPU) is very simple. It receives
transactions from the master, which contains the operands, operator, and rounding mode. The
TLM uses that information to perform a calculation. The FPU formulates a response with the
answer to the calculation and returns it to the master.

Coverage is in terms of requests for this design. The coverage threshold is crossed when a
sufficient number of requests of certain kinds have been seen.

Key Concepts
• The entire design is modeled at the transaction level.

• The master generates a stream of transactions that drives the operation of the DUT,
which in this case is the FPU TLM.

• The coverage collector accumulates coverage information from the DUT.

• The coverage collector forms a feedback look, turning off the master when the coverage
threshold has been reached.

master
FPU
TLM

request
coverage

`

`

`

Advanced Verification Methodology Cookbook, 2.0196

Stepwise Refinement
Transaction Level FPU

July 24, 2006

Stepwise Refinement: Transaction Level FPU

Advanced Verification Methodology Cookbook, 2.0 197
July 24, 2006

Stepwise Refinement: Transaction Level FPU

SystemVerilog Implementation Details
In addition to addressing the concept of stepwise refinement from TLM to RTL, this example
also illustrates the use of master and slave bi-directional ports for TLM communication. A
master port is used to put transactions (in this case, fpu_request transactions) to a slave, and
get the corresponding responses (fpu_response) transactions back. The corresponding slave
port is used to get requests and put responses back. In this particular example, the fpu_master
communicates directly with the fpu_tlm transaction-level model.

Master
The fpu_master has a single tlm_blocking_master_if port, called master_port, as shown
here:

20 class fpu_master extends avm_named_component;
21
25
26 tlm_blocking_master_if #(.REQ(fpu_request),
27 .RSP(fpu_response)) master_port;
file: topics/08_stepwise_refinement/fpu_sv/fpu_master.sv

Since there is no pipelining in this example, each call to master_port.put() is immediately
followed by a master_port.get(). Each of these calls blocks, so the master does not continue
until the slave has fully processed the request and provided the accompanying response.

TLM
In order to communicate with the fpu_master, and to be suitable as a golden model later on, we
define the fpu_tlm to have a tlm_req_rsp_channel (called master_channel) which connects
the fpu_tlm to the master’s master_port. Fpu_tlm also has an analysis port (called
response_ap) that can be used for coverage collecting.

20 class fpu_tlm extends avm_verification_component;
21 tlm_req_rsp_channel #(.REQ(fpu_request),
22 .RSP(fpu_response)) master_channel;
23
26
27 tlm_blocking_master_if #(.REQ(fpu_request),.RSP(fpu_response))
28 blocking_master_export;
29
30 protected tlm_blocking_get_if #(fpu_request) slave_get_export;
31 protected tlm_blocking_put_if #(fpu_response) slave_put_export;
32
33 analysis_port #(fpu_response) response_ap;
file: topics/08_stepwise_refinement/fpu_sv/fpu_tlm.sv

To simplify the references to the master_channel’s internal fifo, we declare the
slave_get_export and slave_put_export interfaces, which will be connected to the
corresponding get and put implementations of the master_channel:

Advanced Verification Methodology Cookbook, 2.0198

Stepwise Refinement: Transaction Level FPU

July 24, 2006

42 function void export_connections;
43 blocking_master_export = master_channel.blocking_master_export;
44 slave_get_export = master_channel.blocking_get_request_export;
45 slave_put_export = master_channel.blocking_put_response_export;
46 endfunction // void
file: topics/08_stepwise_refinement/fpu_sv/fpu_tlm.sv

With these connections in place, the behavior of the FPU TLM is contained in the compute()
method. The TLM simply waits for a request to be posted, calls this method, and returns the
response:

53 slave_get_export.get(m_req);
56
58 m_rsp = compute(m_req);
59
62 slave_put_export.put(m_rsp);
file: topics/08_stepwise_refinement/fpu_sv/fpu_tlm.sv

Stepwise Refinement: Transaction Level FPU

Advanced Verification Methodology Cookbook, 2.0 199
July 24, 2006

Stepwise Refinement: Transaction Level FPU

SystemC Implementation Details
The controller for this example is very simple, but its structure is worth exploring. In the header
for the controller, you’ll see it has two connections, start_stop_port and op_cov.
Sc_start_stop is a port bound to start_stop_config_if. The controller uses this interface
to start and stop stimulus generation by the master.

31 class controller : public sc_module
32 {
33 public:
34 controller(sc_module_name nm) :
35 sc_module(nm),
36 start_stop_port(“start_stop_port”)
37 {
38 SC_METHOD(operator_coverage_notification_handler);
39 sensitive << op_cov.covered_event();
40
41 SC_THREAD(main_thread);
42 }
43 SC_HAS_PROCESS(controller);
44 sc_port<start_stop_config_if> start_stop_port;
45
46 coverpoint_notify_port op_cov;
47
48 private:
49 void main_thread();
50 void operator_coverage_notification_handler();
file: topics/08_stepwise_refinement/01_fpu_tlm_sc/controller.h

Op_cov is a coverpoint_notify_port, which is the kind of port on coverage collectors. A
coverpoint_notify_port has an event which is triggered when the coverage threshold is
reached in the coverage collector. The method operator_coverage_notification_handler()
is sensitive to covered_event supplied by the coverpoint_notify_port. When the coverage
threshold is reached, the event is triggered which causes
operator_coverage_notification_handler() to be called.

Main_thread is, as the name suggests, the main thread for the controller. Since the controller
orchestrates the testbench, it is also the main thread for the whole test.

25 void controller::main_thread()
26 {
27 start_stop_port->start();
28 }
file: topics/08_stepwise_refinement/01_fpu_tlm_sc/controller.cc

The controller invokes start() on the master to start the stream of stimulus operating.

Advanced Verification Methodology Cookbook, 2.0200

Stepwise Refinement: Transaction Level FPU

July 24, 2006

Master
The master has two connections as well. Master_port is the port to and from which the master
sends requests and receives responses. Start_stop_export is an interface that allows it to be
bound to the controller.

49 sc_port<tlm_master_if<fpu_request,fpu_response> > master_port;
50
51 sc_export<start_stop_config_if> start_stop_export;
file: topics/08_stepwise_refinement/fpu_sc/fpu_master.h

Recall that exports in SystemC are the “provides” side of a requires/provides connection. The
functions that start_stop_export are providing are start() and stop(), both of which are
methods of fpu_master. In the constructor, we bind start_stop_export to *this making
those interface functions accessible externally via the export. Now, any component that binds to
start_stop_export is able to call start() and stop().

39 fpu_master(sc_module_name nm) :
40 sc_module(nm),
41 master_port(“master_port”),
42 start_stop_export(“start_stop_export”)
43 {
44 start_stop_export(*this);
45 SC_THREAD(run);
46 }
file: topics/08_stepwise_refinement/fpu_sc/fpu_master.h

Stepwise Refinement
FPU RTL

Advanced Verification Methodology Cookbook, 2.0 201
July 24, 2006

Stepwise Refinement

FPU RTL

Description
This example is a stepwise refinement over the previous example. The TLM model of an FPU
has been replaced with an RTL model of the FPU plus a driver and monitor. The master,
coverage collector, and coverage feedback loop are reused from the TLM testbench.

Figure 8-2. Pin-out for RTL model of FPU

master driver`
FPU
RTL

clock

monitor
request

coverage
`

`

FPU

32

32

32
A

B

OUT

READY

Exceptions

OP ROUND START

3 2

8

CLK

Advanced Verification Methodology Cookbook, 2.0202

Stepwise Refinement
FPU RTL

July 24, 2006

The RTL model of the FPU1 has three sets of pins, input, output, and control. The cookbook kit
contains the complete documentation on the FPU model.

Input

• A - 32 bit floating point operand

• B - 32 bit floating point operand

Output

• Out - 32 bit floating point quantity

• Exceptions. The FPU can signal 8 exceptions

• inexact

• overflow

• underflow

• divide-by-zero

• infinity

• zero

• QNaN

• SNaN

Control

• Operator is 3 bits. The values supported are:

• 000 = add

• 001 = subtract

• 010 = multiply

• 011 = divide

• 100 = square root

• 101 = unused

• 110 = unused

• 111 = unused

• Rounding mode is 2 bits. The possible values are:

1. The RTL model of the FPU is the fpu100 model written in VHDL. The source of this block is
OpenCores.org. (http://www.opencores.org)

Stepwise Refinement
FPU RTL

Advanced Verification Methodology Cookbook, 2.0 203
July 24, 2006

a. 00 = round to nearest even

b. 01 = round to zero

c. 10 = round up

d. 11 = round down

• Start. Calculations begin on the rising edge of start signal.

• Ready. When a calculation completes this signal is asserted.

Exceptions

• Inexact

• Underflow

• Overflow

• Divide-by-zero

• Infinity

• Control

• Zero

• QNaN

• SNan

More details about the VHDL FPU design is located in the file
topics/08_stepwise_refinement/fpu_vhd/doc/fpu.pdf in the cookbook kit.

Key Concepts
• A TLM model can be replaced by an RTL model along with an appropriate set of

transactors. The transactors allow the RTL model to be connected into a transaction
level environment by converting between pin level activity and streams of transactions.

• The transaction level environment is reused. In our example, this includes the master
and the coverage collector.

The FPU model and driver share a clock. This means that the transactions collected by the
monitor are timed: the begin and end times of each transaction are known. In the transaction
level FPU model we saw in the previous example, the transactions were untimed. Their order
and content are important but not the time in which they occur. However, in the RTL
implementation, timing is a concern.

Even though we have a timed model, for the purposes of collecting coverage timing is not of
interest. The coverage collector takes in transaction as they come, at whatever time they come.

Advanced Verification Methodology Cookbook, 2.0204

Stepwise Refinement
FPU RTL

July 24, 2006

Data moves from the untimed domain to the timed domain, and back to the untimed domain.
The stimulus generator is untimed, it sends transactions to the driver, which converts the
untimed transactions to timed pin activity. The monitor converts the (timed) pin activity to a
stream of untimed transactions.

The transactors convert data, control, and timing between the transaction level and pin level to
enable the interface between the untimed transaction domain and the timed RTL domain.

Stepwise Refinement: FPU RTL

Advanced Verification Methodology Cookbook, 2.0 205
July 24, 2006

Stepwise Refinement: FPU RTL

SystemVerilog Implementation Details

Driver
Since we’re using the same fpu_master component in this example, the communication to the
fpu_driver must be compatible. Thus, the driver has a tlm_req_rsp_channel master_channel
and a blocking_master_export, just as the fpu_tlm has.

20 class fpu_driver extends avm_verification_component;
21 tlm_req_rsp_channel #(.REQ(fpu_request),
22 .RSP(fpu_response)) master_channel;
23
26
27 virtual fpu_pin_if m_fpu_pins;
28
29 tlm_blocking_master_if #(.REQ(fpu_request),
30 .RSP(fpu_response)) blocking_master_export;
31 tlm_blocking_slave_if #(.REQ(fpu_request),
32 .RSP(fpu_response)) master_chan_slave;
33
34 analysis_port #(fpu_response) response_ap;
35
file: topics/08_stepwise_refinement/fpu_sv/fpu_driver.sv

Notice that, rather than the separate put and get exports that the fpu_tlm model used to
communicate with the tlm_req_rsp_channel, we use the slave_export:

44 function void export_connections;
45 blocking_master_export = master_channel.blocking_master_export;
46 master_chan_slave = master_channel.blocking_slave_export;
47 endfunction // void
file: topics/08_stepwise_refinement/fpu_sv/fpu_driver.sv

Semantically, the master_chan_slave interface is identical to the individual get and put
interfaces. This single connection simplifies the code.

The operation of the fpu_driver is similar to the fpu_tlm in that it gets the request transaction
and puts the response back to the master, which blocks waiting for the cycle to complete.

69 forever begin
71 master_chan_slave.get(m_req);
74 issue_request(m_req);
77 wait(m_fpu_pins.ready == 1);
78
79 m_rsp = collect_response(m_req);
80
82 master_chan_slave.put(m_rsp);
83
84 @(posedge m_fpu_pins.clk);
85
86 end
87 endtask // run

Advanced Verification Methodology Cookbook, 2.0206

Stepwise Refinement: FPU RTL

July 24, 2006

file: topics/08_stepwise_refinement/fpu_sv/fpu_driver.sv

Monitor
The monitor connects to the fpu_pin_if so it can monitor the physical signals connected to the
DUT. It contains two analysis_ports to communicate the request and response transactions.

20 class fpu_monitor extends avm_verification_component;
21
24 virtual fpu_pin_if m_fpu_pins;
25
26 analysis_port #(fpu_request) request_ap;
27 analysis_port #(fpu_response) response_ap;
28
file: topics/08_stepwise_refinement/fpu_sv/fpu_monitor.sv

The monitor itself must be sensitive to the clk signal, and simultaneously looks for request and
response transactions on the bus.

37 task run();
38 forever
39 @(posedge m_fpu_pins.clk) fork
40 if(m_fpu_pins.start == 1’b1) begin
42 monitor_request();
43 end
44 if(m_fpu_pins.ready == 1’b1) begin
46 monitor_response();
47 end
48 join
49 endtask // run
file: topics/08_stepwise_refinement/fpu_sv/fpu_monitor.sv

When a request transaction is seen, the monitor populates an fpu_request object and copies it to
the m_req_in_process placeholder. M_req_in_process is later sent out the analysis port.

51 task monitor_request();
52 fpu_request req;
67 req.a = $bitstoshortreal(m_fpu_pins.opa);
68 req.b = $bitstoshortreal(m_fpu_pins.opb);
69 req.op = op_t’(m_fpu_pins.fpu_op);
70 req.round = round_t’(m_fpu_pins.rmode);
71
72 m_req_in_process = req.clone();
73
77 endtask // monitor_request
file: topics/08_stepwise_refinement/fpu_sv/fpu_monitor.sv

When a response transaction is seen, the monitor populates an fpu_response object by taking
the operand and operator values from the corresponding request transaction and grabbing the
result value from the bus. It then writes both the response and corresponding request
transactions out their respective analysis_ports.

79 task monitor_response();

Stepwise Refinement: FPU RTL

Advanced Verification Methodology Cookbook, 2.0 207
July 24, 2006

80 fpu_response rsp;
90 rsp = new();
91
92 rsp.a = m_req_in_process.a;
93 rsp.b = m_req_in_process.b;
94 rsp.op = m_req_in_process.op;
95 rsp.round = m_req_in_process.round;
96
97 rsp.result = $bitstoshortreal(m_fpu_pins.outp);
109 request_ap.write(m_req_in_process);
110 response_ap.write(rsp);
111
115 endtask // monitor_response
file: topics/08_stepwise_refinement/fpu_sv/fpu_monitor.sv

Advanced Verification Methodology Cookbook, 2.0208

Stepwise Refinement: FPU RTL

July 24, 2006

Stepwise Refinement: FPU RTL

Advanced Verification Methodology Cookbook, 2.0 209
July 24, 2006

Stepwise Refinement: FPU RTL

SystemC Implementation Details

Driver
The group of three components, the monitor, driver, and RTL FPU, that replace the transaction-
level FPU must have the same interfaces as the transaction-level model it replaces. For the
driver, that means it must have the same transaction-level interface as the transaction-level FPU.

38 class fpu_driver : public sc_module, public fpu_driver_pin_if
39 {
40 public:
41 fpu_driver(sc_module_name nm) :
42 sc_module(nm),
43 req_rsp_channel(“req_rsp_channel”),
44 master_export(“master_export”),
45 slave_export(“slave_export”)
46 {
47 SC_THREAD(run);
48
49 master_export(req_rsp_channel.master_export);
50 slave_export(req_rsp_channel.slave_export);
51 }
52 SC_HAS_PROCESS(fpu_driver);
53
54 sc_export<tlm_master_if<fpu_request,fpu_response> > master_export;
55
56
57 private:
58 void run();
59 void issue_request(const fpu_request& req);
60 fpu_response collect_response(const fpu_request& req);
61
62 tlm_req_rsp_channel<fpu_request,fpu_response> req_rsp_channel;
63 sc_export<tlm_slave_if<fpu_request,fpu_response> > slave_export;
64 };
file: topics/08_stepwise_refinement/fpu_sc/fpu_driver.h

Req_rsp_channel is a bi-directional channel through which requests and responses flow and
has precisely the same type as the channel of the same name in the transaction-level FPU. The
request/response channel is connected to a master and slave export which provide interfaces for
retrieving requests and posting responses.

The driver gets a request from the stimulus generator, converts it to pin level activity and then
waits for a response to appear on the pin interface. The response is available when the ready bit
goes high.

53 while(1)
54 {
55 req = slave_export->get();
56 issue_request(req);
57
58 while(ready != 1)

Advanced Verification Methodology Cookbook, 2.0210

Stepwise Refinement: FPU RTL

July 24, 2006

59 {
60 wait(ready.default_event());
61 }
62 rsp = collect_response(req);
63 slave_export->put(rsp);
64
65 wait(clk.default_event());
66 }
file: topics/08_stepwise_refinement/fpu_sc/fpu_driver.cc

Finally, it collects up the response information, constructs a response object, and returns the
response back to the master.

Monitor
The monitor is a member of the group of three components that are used to replace the
transaction-level FPU model with an RTL one. So, like the driver, it must also provide
interfaces that are identical to the transaction-level FPU model. For the driver, the interface of
interest is the interface for stimulus requests and responses. For the monitor the interface of
interest is the request analysis port.

34 class fpu_monitor : public sc_module, public fpu_monitor_pin_if
35 {
36 public:
37 fpu_monitor(sc_module_name nm) :
38 sc_module(nm)
39 {
40 SC_METHOD(monitor_request);
41 sensitive << clk.pos();
42
43 SC_METHOD(monitor_response);
44 sensitive << clk.pos();
45 }
46 SC_HAS_PROCESS(fpu_monitor);
47
48 analysis_port<fpu_request> request_ap;
49 analysis_port<fpu_response> response_ap;
50
51 void monitor_request();
52 void monitor_response();
53
54 private:
55 fpu_request req_in_process;
56 };
file: topics/08_stepwise_refinement/fpu_sc/fpu_monitor.h

The monitor has two analysis ports, one for sending a stream of requests and the other for
sending a stream of responses. The request analysis port matches the analysis port on the
transaction-level FPU model.

The monitor operates via two methods, one for recognizing requests and the other for
recognizing responses. The method for recognizing requests first looks to see if the start bit has

Stepwise Refinement: FPU RTL

Advanced Verification Methodology Cookbook, 2.0 211
July 24, 2006

been asserted. If it has then a request is active on the bus, in which case it collects information
from the pins and forms a request object.

25 void fpu_monitor::monitor_request()
26 {
27 fpu_request req;
28
29 if(start != 1)
30 return;
31
32 req.a = bits_to_float(opa);
33 req.b = bits_to_float(opb);
34 req.op = bits_to_op(fpu_op);
35 req.round = bits_to_round(rmode);
36
37 // put the request into the pipeline
38 req_in_process = req;
39
40 cout << sc_time_stamp() << “: monitor request: “ << req << endl;
41 }

The FPU DUT is pipelined, a response appears one clock cycle after receiving a request. The
monitor is similarly pipelined in order to properly follow along the activity of the DUT. Rather
than sending the request immediately out of the analysis port, the request method stores into the
pipeline represented by the variable req_in_process.

46 void fpu_monitor::monitor_response()
47 {
48 fpu_response rsp;
49
50 if(ready != 1)
51 return;
52
53 rsp.a = req_in_process.a;
54 rsp.b = req_in_process.b;
55 rsp.op = req_in_process.op;
56 rsp.round = req_in_process.round;
57
58 rsp.result = bits_to_float(output);
59
60 // collect up status information
61 rsp.status[STATUS_INEXACT] = ine;
62 rsp.status[STATUS_OVERFLOW] = overflow;
63 rsp.status[STATUS_UNDERFLOW] = underflow;
64 rsp.status[STATUS_DIV_ZERO] = div_zero;
65 rsp.status[STATUS_INFINITY] = inf;
66 rsp.status[STATUS_ZERO] = zero;
67 rsp.status[STATUS_QNAN] = qnan;
68 rsp.status[STATUS_SNAN] = snan;
69
70 // send out the pipelined request and response
71 request_ap.write(req_in_process);
72 response_ap.write(rsp);
73
74 cout << sc_time_stamp() << “: monitor response: “ << rsp << endl;
75 }

Advanced Verification Methodology Cookbook, 2.0212

Stepwise Refinement: FPU RTL

July 24, 2006

The response method first checks to see of the ready bit has been asserted. If it has then a
response is active on the bus. So then it collects up information for the response. Some of the
response information comes for the request that is currently in the pipeline. When all the data
for the response has been assembled the monitor sends the request out of the request analysis
port and the response out of the response analysis port.

Stepwise Refinement
FPU Golden Model

Advanced Verification Methodology Cookbook, 2.0 213
July 24, 2006

Stepwise Refinement

FPU Golden Model

Description
The gist of the testbench organization in this example is to compare the responses from the
TLM and RTL implementations. The RTL and transaction level models operate in parallel and
their responses to the same stimuli are compared.

master driver`
FPU
RTL

clock

monitor

TLM
adapter
`

requests

response
comparator

`

`

responses from monitor

responses from TLM

FPU
TLM

`

request
coverage

`

`

match
coverage

`

Advanced Verification Methodology Cookbook, 2.0214

Stepwise Refinement
FPU Golden Model

July 24, 2006

To build this testbench, we have reused the transaction level model as a golden model. The
monitor produces two streams of transactions, requests and responses. The request stream is fed
into the (untimed) TLM model. The responses are fed into a response comparator. Similarly, the
responses from the TLM are also fed into the comparator. The comparator compares the TLM
response and the RTL response generated by the same request.

Key Concepts
• The TLM, which was initially built for design exploration at the transaction level, is now

reused as a golden model in the RTL teestbench. The RTL and transaction level
implementations of a model are compared at run time to create a self-checking
testbench.

• The monitor produces two streams of transactions, one containing requests and the other
containing responses.

• Most of the components in this testbench are reused. Of the new components, the TLM
adaptor, response comparator, and match coverage collector, only the TLM adapter is a
truly new component. The others are derived from library components.

A stepwise refinement flow involves replacing transaction level models with RTL models.
Making this substitution means you need to confirm that their operation is identical. This
example illustrates how to reuse the TLM as a golden model by adding an adapter which feeds
request and retrieves responses to and from the TLM.

Stepwise Refinement: FPU Golden Model

Advanced Verification Methodology Cookbook, 2.0 215
July 24, 2006

Stepwise Refinement: FPU Golden Model

SystemVerilog Implementation Details
The only part truly new to this example is the TLM adapter. This component has three ports: a
master port, which connects to the TLM; a request port for retrieving request; and a response
port for sending responses.

20 class fpu_tlm_adapter extends avm_verification_component;
21
25 tlm_blocking_master_if #(.REQ(fpu_request),
26 .RSP(fpu_response)) master_port;
27
28 analysis_fifo #(fpu_request) request_fifo;
29 analysis_if #(fpu_request) request_export;
30
31 analysis_port #(fpu_response) response_ap;
file: topics/08_stepwise_refinement/fpu_sv/fpu_tlm_adapter.sv

The request_export is an analysis_if in order to connect it to the output of the monitor.

It’s a very simple device; it receives requests from an input fifo and sends them to the TLM. It
then waits for a response from the TLM and, when it gets one, sends it out the analysis port to
the in_order_comparator.

45 task run;
47 forever begin
48 request_fifo.get(m_req);
51 master_port.put(m_req);
52
53 master_port.get(m_rsp);
56 response_ap.write(m_rsp);
57 end
58 endtask // run
file: topics/08_stepwise_refinement/fpu_sv/fpu_tlm_adapter.sv

The TLM FPU is designed to be connected to a tlm_master_if and not analysis ports. The
purpose of this adapter is to provide the connection between the monitor, TLM FPU model, and
the in_order_comparator.

Advanced Verification Methodology Cookbook, 2.0216

Stepwise Refinement: FPU Golden Model

July 24, 2006

Stepwise Refinement: FPU Golden Model

Advanced Verification Methodology Cookbook, 2.0 217
July 24, 2006

Stepwise Refinement: FPU Golden Model

SystemC Implementation Details
The only part truly new to this example is the TLM adapter. This component has three ports: a
master port that connects to the TLM, a request port for retrieving request, and a response port
for sending responses.

47 sc_port<tlm_master_if<fpu_request,fpu_response> > master_port;
48 sc_export< analysis_if<fpu_request> > request_export;
49 analysis_port<fpu_response> response_ap;
file: topics/08_stepwise_refinement/fpu_sc/fpu_tlm_adapter.h

The request_export has an analysis_if in order to connect it to the output of the monitor.

It is a very simple device: it receives requests from an input fifo and sends them to the TLM. It
then waits for a response from the TLM and, when it receives one, sends it out the analysis port
to the in_order_comparator.

51 void run()
52 {
53 fpu_request req;
54 fpu_response rsp;
55
56 while(1)
57 {
58 req = request_fifo.get();
59 master_port->put(req);
60 rsp = master_port->get();
61 response_ap->write(rsp);
62 }
63 }
file: topics/08_stepwise_refinement/fpu_sc/fpu_tlm_adapter.h

The TLM FPU is designed to be connected to a tlm_master_if<> and not analysis ports. The
purpose of this adapter is to provide the connection between the monitor, TLM FPU model, and
the in_order_comparator.

Advanced Verification Methodology Cookbook, 2.0218

Stepwise Refinement: FPU Golden Model

July 24, 2006

Constrained Random Verification
Overview of CRV Methodology

Advanced Verification Methodology Cookbook, 2.0 219
July 24, 2006

Chapter 9
Constrained Random Verification

Verification engineers write tests that provide stimuli to a design in order to test different pieces
of functionality and check that it responds as expected. Each of these tests takes time to write,
debug, and run. Once a test is working, it becomes part of a regression suite, and the user moves
on to write a new test, which also takes time to write, debug, and run. Such an approach requires
the test writer to create an explicit test for each feature of the design, so that more tests (and
more time) are required as more features are added to the design.

Rather than require the verification engineer to write tests to check each feature individually,
constrained-random verification (CRV) effectively allows a single test to check multiple
features. With this methodology, each “test” actually describes a set of possible scenarios, and
the simulator itself chooses a specific scenario for each invocation. This can be an
extraordinarily powerful verification methodology, but it is one that is not supported well by
either Verilog or VHDL. SystemVerilog has been designed specifically to support this
methodology.

Overview of CRV Methodology

Directed Testing
Directed testing is used when a verification engineer orchestrates the stimulus for every single
clock cycle or transaction that might span multiple clock cycles. Each cycle or group of cycles
is directed at verifying a particular feature selected by the verification engineer.

Because of the straightforward nature of directed tests, they are fairly easy to write.
Unfortunately, by definition, they only address the explicit scenarios predicted by the
verification engineer. As designs get more complex, it becomes harder to write directed tests to
cover all of the possible scenarios and corner cases, both because the expected response
becomes harder to predict and because the corner cases become harder to hit, if they can be
predicted at all. Such tests can be improved somewhat by adding randomization, such as writing
random values to a memory in addition to, or instead of, a walking-ones pattern. These tests are
still inherently directed.

Data that is irrelevant to the features being tested may still use random number generators as
filler for content. The Verilog system functions $random or $dist_uniform provide a simple way
of filling bits with random numbers. They can also be used to randomize delays or repetition
counts.

Advanced Verification Methodology Cookbook, 2.0220

Constrained Random Verification
Overview of CRV Methodology

July 24, 2006

At some point, adding significant amounts of randomization to a directed testing methodology
will not sufficiently address the testing issues. The procedural nature of the test code itself limits
its effectiveness and limits the quantity of new tests that can be derived from it. Starting with
such a methodology precludes the possibility of building a truly randomized environment in
which corner cases can be exercised and from which new tests can be derived with a minimum
of coding changes.

Constrained Random Verification
At first glance, the idea of feeding totally random stimuli into a design seems inefficient, and it
would be if there were no constraints on the random numbers the generators are allowed to
produce. The idea behind CRV is that both the data and the transactions generated by the test
are chosen at random from a set of valid, or constrained, possibilities.

For example, instead of having to write many different tasks for each operation, only one
command task is created and the operation is encoded as data which is passed as an argument to
a single task, as in the example below.

begin
write(address[1],data1);
write(address[2],data[2]);
read(address[3],data[3]);
write(address[4],data[4]);

end

enum {READ, WRITE} op[N];
for (int i=0;i<N;i++)

command(op[i],address[i],data[i]);
Eventually all the arguments to the command task will be encapsulated into a single object with
different fields for all the choices that can be randomized.

The task of the verification engineer is to take what has been documented as legal input to a
design and turn that information into a set of constraints. Note that errors in the input stimulus
are legal if the specification for the design says that the design is supposed to handle those
errors.

Writing constrained random tests and testing the design is only part of a complete verification
methodology. Functional coverage reporting of the randomly generated tests against a test plan
is also necessary.

Directing Tests from Constrained Random
In a constrained random environment, a directed test is achieved by tightly constraining the
choices so that a single scenario is exercised. Thus, a “sanity test” in this environment can be
achieved by constraining the test to generate a single write to a specified address, followed by a
single read from the same address. Once this sanity test is validated you have proved that the
read/write interface works properly. You then remove the constraints, allowing a full broad-

Constrained Random Verification
Overview of CRV Methodology

Advanced Verification Methodology Cookbook, 2.0 221
July 24, 2006

spectrum test to occur. In this test, all of the registers are read/written in random order, with
random data, in all different modes. When a problem occurs, it is easy to add new constraints to
the test in order to focus on the particulars that caused the problem so it can be debugged.

This is not to say that directed tests are not useful in some circumstances. On the contrary, for
certain scenarios it may be easier to write a directed test to guarantee that the design reaches a
certain state quickly, rather than rely on random behavior to achieve the desired results. For
example, when verifying an interrupt mask register, the test must set each mask bit one at a
time, generate the corresponding interrupt, and then clear the mask bit. The chance of such a
behavior being achieved randomly is practically zero; so, in this instance, it makes much more
sense to write a directed test.

Basics of the Technology
The technology behind constrained random verification can be divided into two basic
components. One component is the actual random number generation (RNG) process. Although
this is largely an academic discussion, there are a few issues that a user should be aware of, such
as seeding and stability. The other component is the actual constraint solver. The solver
determines what set of possible values, if any, would satisfy the given constraints. This set of
possible values is called the solution space. In practice, the solver computes the solution space
first and then uses the random number generator to select one of those solutions.

Random Number Generation
The process of random number generation on a computer is not really random at all. In fact, it is
a predictable sequence of numbers, called a pseudo-random number. The generator appears to
be random because the sequence takes so long before it repeats. Integer RNG implementations
represent a sequence with an internal state register, typically 96-bits. Thus, after generating 296
32-bit values, the sequence will repeat. Generating a random value for a variable having a
greater number of bits than the internal state register means that the sequence will repeat before
reaching all possible values. The RNG process steers a number of random facets of the
testbench, including constraints and random procedural statements. For now, let’s consider the
system function $urandom, on line 4, that SystemVerilog provides to access the RNG directly.
The example below displays a sequence of five pseudo-random numbers.

1 int A;
2 initial repeat (5)
3 begin
4 A =$urandom;
5 $display(A);
6 end

Without any modifications to the code, the RNG delivers the same sequence of random
numbers each time the simulation executes. This is an important property because if a problem
is found in the design under test, the design can be modified and verified using the identical test.

Advanced Verification Methodology Cookbook, 2.0222

Constrained Random Verification
Overview of CRV Methodology

July 24, 2006

Random Seeds

Random number generators can change the sequence of values they produce by accepting a
starting seed value. The seed is essentially a code that is converted into a value in the internal
state of the RNG and represents a particular sequence.

1 int A;
2 initial
3 begin
4 A=$urandom(`mySEED);
5 repeat (5)
6 begin
7 A =$urandom;
8 $display(A);
9 end

10 end

The value mySEED on line 4 can be changed as needed to generate a different sequence of five
pseudo-random numbers.

As designs become more complex, one sequence of generated random numbers may become
disturbed by another generated sequence of random numbers. The sequence of random numbers
for A will be disturbed by the additional call to $urandom, on line 5 below.

1 int A, B;
2 initial repeat (5)
3 begin
4 A =$urandom;
5 B =$urandom;
6 $display(A);
7 end

If the original example produced the sequence 6, 35, 41, 3, 27 for A, the new sequence will start
as 6, 41, 27, etc., because the generated numbers, 35 and 3, will become part of the sequence for
B.

One possible way to avoid this disturbance is to manually seed each call to $urandom with a
different seed variable. Each variable must also have a unique value; otherwise each RNG
would generate the same sequence of random values.

Another way to address this issue is by defining a scheme for automatically generating
independent seeds for each RNG. This scheme, together with the reproducible sequences of
random values, gives the system random stability.

Random Stability

Knowing which changes to the testbench affect random stability is important for debugging and
regression testing. In SystemVerilog, each instance of a hierarchical subsystem (a module,
program, or interface) starts out with its own root seed, and then uses the RNG to pick
additional seeds within that subsystem. In this way, one subsystem generating random numbers
will be unaffected by the addition or removal of another subsystem.

Constrained Random Verification
Overview of CRV Methodology

Advanced Verification Methodology Cookbook, 2.0 223
July 24, 2006

Within each subsystem, each static thread (an initial or always block) gets a derived seed
from the root seed in the order the threads are declared in the subsystem. Within the static
thread, dynamic child threads get a derived seed in the order that the threads are procedurally
started. Thus, each thread, whether it is static or dynamic, has its own seed. Calls to $urandom
in each thread produce a stable sequence of random values, as long as the relative thread
relationships are maintained: declarative ordering for static threads; procedural ordering for
dynamic threads.

In the example below, the sequence of random numbers generated for A is not disturbed
because the initial block on line 7 is a static thread added after the static thread declared on line
2.

1 int A, B;
2 initial repeat (5)
3 begin
4 A =$urandom;
5 $display(A);
6 end
7 initial repeat (5)
8 begin
9 B =$urandom;

10 end

Constraint Solving
In actuality, all random numbers are generated with at least one constraint, the size (or number
of bits) to be randomized. The size determines the total number of possible values that the
random variable may have; i.e., the size of the solution space. A constraint is basically a
Boolean expression that is required to be true for the values the solver picks. A constraint
typically reduces the size of the solution space.

A constraint expression can be a mixture of random and non-random variables. Non-random
variables make the constraint state-dependent, meaning that one can dynamically modify the
constraints during the test. If a random variable has no constraints, or appears in constraints with
no other random variables, it is called a scalar random variable. Its solution space can be
separated and solved independently of other random variables.

The size of a solution space is the permutation of all possible values of jointly constrained
random variables that satisfy their constraints. The solver will create an order to the possible
solutions and use the RNG to pick one of the ordered solutions.

For example, a single 8-bit scalar random variable, A, has the constraint 2 < A && A<9. Its
solution space has six possible solutions (3–8), and the size of that random variable can be
reduced to 4 bits.

Advanced Verification Methodology Cookbook, 2.0224

Constrained Random Verification
Overview of CRV Methodology

July 24, 2006

Figure 9-1. Single Variable Constraint

Now suppose there are two 8-bit random variables, A and B. In the absence of any constraints,
there are two solution spaces, each with 256 possible values for A and B. Then add the
constraint that A!=B. With this constraint there is now just one solution space with 65,280
solutions. (The permutations of A and B is 28+8 = 65,536 solutions, minus the 256 solutions
when A==B.) It is now considered a single 16-bit random variable.

Figure 9-2. Constraint with Multiple Variables

The amount of time needed to solve a constraint increases in direct correlation to the total
number of interrelated bits of random variables that must be solved for one solution space. Keep
the total number of bits of related random variables down to the absolute minimum. Try to
break up the interdependencies of random variable constraints by randomizing in stages. For
example, if you want to generate a sorted list of 100 random variables, you could create an
iterative constraint along the likes of Ai< Ai+1. However, this would create a single random
variable of 3200 bits, most likely unsolvable in any reasonable amount of CPU time. A better
solution is to generate 100 independent 32 bit random numbers, then sort them procedurally
afterwards.

A
range: 0-255

2 < A < 9

256 solutions
6 solutions

(3,4,5,6,7,8)

A
range: 0-255

A != B
256 solutions

(216 – 256) solutionsB
range: 0-255

256 solutions

Constrained Random Verification
Randomization with Object Oriented Programming

Advanced Verification Methodology Cookbook, 2.0 225
July 24, 2006

Randomization with Object Oriented
Programming

In SystemVerilog, random variables, random number generators, and constraints are integrated
into the object oriented class system. You do not need to know everything about object oriented
programming to get started using CRV. Here are just a few important concepts.

Object Oriented Programming Basics
In its simplest form, a class is like a structure, an encapsulation of data. In SystemVerilog,
classes are dynamically created, whereas structures are created when they are declared.

In C++ terminology, a data variable that is part of a class definition is called a property. By
embedding task and function definitions called methods, a class combines data and functionality
into a single object. This allows details of the class implementation to be abstracted away from
the class user. In this example, the writer of the task does not know on line 10 whether they are
accessing a data member or a function.

1 class Packet;
2 bit [7:0] m_address;
3 bit [31:0] m_data;
4 function bit parity;
5 return ^m_data;
6 endfunction
7 endclass : Packet
8
9 task command(input Packet P);

10 if (P.m_parity)
11 ...
12 endtask

The real power of object oriented programming is achieved through the use of inheritance. A
new class may be defined as a derivative of a previously-defined base class, from which it
inherits everything defined in the base class. The derived class definition may then add to or
take search order precedence over the data properties or methods of the base class. The
following example extends the original Packet class by adding a new field m_id, and overrides
the parity method.

class Packet;
 bit [7:0] m_address; // properties
 bit [31:0] m_data;
endclass : Packet

typedef struct {
 bit [7:0] m_address; // members
 bit [31:0] m_data;
} Packet_t;

Packet P; //declares a handle to Packet
P = new(); //Constructs an instance of Packet
// P now has a reference to a Packet class
P.m_data = 1234;

Packet_t P; //declares an instance of Packet

P.m_data = 1234;

Advanced Verification Methodology Cookbook, 2.0226

Constrained Random Verification
Randomization with Object Oriented Programming

July 24, 2006

1 class Bad_Packet extends Packet;
2 int m_id;
3 function bit parity;
4 return ~^m_data;
5 endfunction
6 endclass : Bad_Packet

Extending classes creates a hierarchy of class types with a single base class at the root and
subclasses extending down the hierarchy. By default, when creating a subclass object, all of the
higher-level classes, or super classes, in the path to the root base class are constructed at the
same time.

Figure 9-3. Class Hierarchy for Packets

In Figure 9-3, when constructing Really_Bad_Packet, the properties in Bad_Packet and
Packet are also constructed, but hidden from direct access in the extended class. This
characteristic will become important as we begin discussing random variables and constraints,
because the constraint solver solves for all the properties in the super classes.

1 class Really_Bad_Packet extends Bad_Packet;
2 bit [33:0] m_data;
3 function bit parity;
4 return ~^super.m_data;
5 endfunction
6 endclass : Bad_Packet

The reference to super.m_data on line 4 refers to the property m_data in Packet. The super
prefix starts the search for an object one level higher in a class hierarchy.

Adding Randomization to Objects
SystemVerilog uses the rand modifier to distinguish the random variables from the non-random
variables. A constraint is added as a named list of expressions, declared using the constraint
keyword.

1 class Packet;
2 rand bit [7:0] m_address;

packet

bad_packet another_packet ...

verybad_packet ...

Constrained Random Verification
Randomization with Object Oriented Programming

Advanced Verification Methodology Cookbook, 2.0 227
July 24, 2006

3 rand bit [31:0] m_data;
4 constraint addr_range {
5 m_address < 132;
6 }
7 endclass : Packet

The RNG and constraint solver are invoked by using a built-in method of the class,
randomize(), which can be called after the class has been constructed. In this example, calling
P.randomize will randomize m_address using the constraint addr_range, and it will
randomize m_data with no constraints.

1 Packet P;
2 initial begin
3 P = new();
4 if (!P.randomize) $stop;
5 $display(P.m_address);
6 end

Always check the return value from randomize. If the constraints placed on the random
variables in a class have no solution, randomize() returns zero. It is critical to check the return
value so that any problems can be reported to the user. An immediate assertion can be useful for
reporting these problems.

assert (P.randomize) else $error(“No solutions for P.randomize”);

Layering Constraints Using Inheritance
Constraints may be added or overridden when extending a class, just like properties and
methods. All of the existing constraints remain in effect in the base class unless they are
overridden. For example, assume the Packet class in the previous example is extended:

1 class Word_Packet extends Packet;
2 constraint word_align {
3 m_address[1:0] == ‘0;
4 }
5 endclass : Word_Packet

When randomizing an instance of the Word_Packet class, both the addr_range and
word_align constraints apply.

When overriding a random property, always ensure that existing constraints on the parent
property are also overridden.

When extending a class, existing constraints have no affect on any properties added by
extension. A constraint only applies to the properties within the scope of the class hierarchy
where they are defined. Suppose, for example, the previous class Word_Packet was defined as:

1 class Word_Packet extends Packet;
2 rand addr_t [0:3] m_address; // now 32 bits
3 constraint word_align {
4 m_address[1:0] == ‘0;

Advanced Verification Methodology Cookbook, 2.0228

Constrained Random Verification
Managing Constraints

July 24, 2006

5 }
6 endclass : Word_Packet

The only constraint on the m_address in the derived class is word_align. The
super.m_address is still in the base class with the addr_range constraint in affect.

Sometimes it may be helpful to think of fixing the extended class name first and then working
backwards through the base class hierarchy. From the example above, document the class name
Word_Packet as being publically available. In cases where additional constraints are not
needed, extend the class without providing a body.

class Word_Packet extends Packet; endclass

Managing Constraints

Dynamically Modifying Constraints
Constraints may refer to non-random variables that may also be either properties of the class or
external global variables. As the test executes, modifying the variable dynamically modifies the
constraint.

1 typedef bit [7:0] addr_t;
2 typedef bit [31:0] data_t;
3
4 class Packet;
5 rand addr_t m_address;
6 rand data_t m_data;
7 addr_t high_address = ‘1;
8 addr_t low_address = 0;
9 constraint addr_range {

10 m_address <= high_address;
11 m_address >= low_address;
12 }
13 endclass : Packet
14 Packet P;
15 initial begin
16 P = new();
17 P.high_address = 10;
18 assert (P.randomize) else $stop; // range is 0-10
19 $display(P.m_address);
20 P.high_address = ‘1
21 P.low_address = 250;
22 assert (P.randomize) else $stop; // range is 250-255
23 $display(P.m_address);
24 end

Constraints may also be procedurally turned on or off by constraint name. The addr_range
constraint may be turned off by assigning P.addr_range.constraint_mode the value zero.

Constrained Random Verification
Managing Constraints

Advanced Verification Methodology Cookbook, 2.0 229
July 24, 2006

Over Constraining
Given enough time, the constraint solver will find the solution space, if one exists. As
mentioned earlier, the amount of CPU time increases, in direct correlation to the total number of
interrelated bits of random variables that must be solved for one solution space.

One could disconnect the random variables into separate classes and then procedurally
randomize each class, using the results of the first randomization as state variables for the
second. However, this defeats the purpose of the object oriented model, and makes it more
difficult to maintain. SystemVerilog provides a few alternatives that keep all of the random
variables in one class.

Variables that are normally just derivatives of other random variables should use function calls.
Function calls embedded in a constraint provide a way to separate the solution spaces of random
variables. The return value of a function call becomes a state variable. That means the random
variables that are arguments to the function are solved and selected before calling the function.

1 class Packet;
2 rand bit [7:0] m_address;
3 rand bit [31:0] m_data;
4 rand bit m_data_parity;
5 constraint addr_range {
6 m_address < 132;
7 }
8 constraint gen_data_parity {
9 m_data_parity == even_parity(m_data);

10 }
11 function bit even_parity(bit [31:0] d);
12 return (~^d);
13 endfunction
14 endclass : Packet

Since the function call is inside a constraint, the constraint can be turned on or off. If turned off,
m_data_parity returns to being an independent random variable.

Variables that are always just derivatives of other random variables should use the
post_randomize() method. SystemVerilog automatically calls a user-defined
pre_randomize() and post_randomize() method as part of the execution of the
randomize() method. In the example below, m_data_parity is no longer a random variable
and is set on line 9 by the post_randomize method.

1 class Packet;
2 rand bit [7:0] m_address;
3 rand bit [31:0] m_data;
4 bit m_data_parity;
5 constraint addr_range {
6 m_address < 132;
7 }
8 function void post_randomize();
9 m_data_parity = ~^m_data;

10 endfunction

Advanced Verification Methodology Cookbook, 2.0230

Constrained Random Verification
Managing Constraints

July 24, 2006

11 endclass : Packet

Implication
The implication expression A -> B conditionally applies the constraint B if the expression A is
true. The implication operator has the tendency to appear as if they were unidirectional in
nature; however, there is a bi-directional effect in that if constraint B has a very low probability
of being true, the probability of A being true will also be very low.

When both sides of an implication contain random variables, check the mutual probabilities of
both sides being true.

In the example below, there is an implied constraint in the enum variable on line 7 that the m_op
must be one of READ, WRITE, or NOP.

1 typedef bit [7:0] addr_t;
2 typedef enum {READ,WRITE,NOP} kind;
3
4 class Packet;
5 rand addr_t m_address;
6 rand bit [31:0] m_data;
7 rand kind m_op;
8 constraint data_range {
9 (m_op == READ) -> m_data inside {[1:100]};

10 (m_op == WRITE) -> m_data inside {[101:255]};
11 (m_op == NOP) -> m_data inside {0};
12 }
13 endclass : Packet

If m_op equals READ, there are 100 possible values for m_data that satisfy the first implication.
If m_op equals WRITE, there are 155 possible values for m_data that satisfy the second
implication. However, if m_op equals NOP, there is only one possible value of m_data that
satisfies the third implication. That makes a total of 256 possible solutions. Since only 1 out of
256 possible values for m_data would satisfy the third implication, m_op has only a 0.004
chance of having the value NOP.

Distributions and Solving Order
In practice, the randomization process involves calculating a solution space, then randomly
picking a single solution. The solution is then written to the random variables as a set. Normally
the solver picks each solution with a uniform chance. It is possible to advise the solver to pick
the values for particular random variables before others. The solution space for all the random
variables remains the same; however, the uniformity of values chosen is only within the random
variables chosen to be picked earlier. When modifying the previous example to solve for m_op
before m_data, READ, WRITE, and NOP will have a uniform chance of being chosen before
choosing a value for m_data.

1 class Packet;
2 rand addr_t m_address;

Constrained Random Verification
Useful Operations in Constraints

Advanced Verification Methodology Cookbook, 2.0 231
July 24, 2006

3 rand bit [31:0] m_data;
4 rand kind m_op;
5 constraint data_range {
6 (m_op == READ) -> m_data inside {[1:100]};
7 (m_op == WRITE) -> m_data inside {[101:300]};
8 (m_op == NOP) -> m_data inside {0};
9 }

10 constraint order {solve m_op before m_data;}
11 endclass : Packet

A distribution constraint adds weighting factors for choosing values, in addition to advising
which random variables should have values chosen first. It does this without modifying the
solution space, except when a weight is zero. In the example below, m_op has a 2 in 5 chance
(40%) of choosing READ, a 40% chance of choosing WRITE, and a 1 in 5 chance (20%) of
choosing NOP.

1 class Packet;
2 rand addr_t m_address;
3 rand bit [31:0] m_data;
4 rand kind m_op;
5 constraint data_range {
6 (m_op == READ) -> m_data inside {[1:100]};
7 (m_op == WRITE) -> m_data inside {[101:300]};
8 (m_op == NOP) -> m_data inside {0};
9 }

10 constraint op_dist { m_op dist {READ := 2, WRITE := 2 NOP := 1};}
11 endclass : Packet

Use a distribution constraint on only one random variable in a set of interrelated random
variables. It is very difficult to calculate the probability of choosing a value for a random
variable when there is what appear to be multiple, conflicting distribution constraints.
Distribution constraints are used after creating the solution space and are not guaranteed to be
satisfied.

Useful Operations in Constraints

Set Membership
The inside operator is a powerful construct for dynamically creating sets of constrained values.
The inside operator tests for set membership. A range of values is a kind of set and we use the
inside operator here to test if a value is in a valid range. We use it in two ways. If the size of the
memory array is zero (ad_q.num == 0) then we constrain m_op to be a NOP or a WRITE. If the
memory size is not zero, then we constrain m_op to be a READ and m_addr to be in the range of
valid addresses for the memory. The example below shows how to constrain a read transaction
to only those addresses that have been written.

1 module memq;
2 typedef bit [7:0] addr_t;
3 typedef enum {READ,WRITE,NOP} op_t;
4

Advanced Verification Methodology Cookbook, 2.0232

Constrained Random Verification
Useful Operations in Constraints

July 24, 2006

5 class Packet_Xaction extends Packet;
6
7 rand op_t m_op;
8 rand addr_t m_addr;
9 addr_t m_addr_q[addr_t];

10
11 constraint read_only_written {
12 if (m_addr_q.num == 0)
13 m_op inside {NOP,WRITE};
14 else
15 m_op == READ -> m_addr inside {ad_q};
16 }
17 function void post_randomize();
18 if (m_op == WRITE) m_addr_q[m_addr] = m_addr;
19 endfunction // void
20
21 endclass
22
23 Packet_Xaction X = new;
24
25 initial repeat (100)
26 begin
27 if (X.randomize);
28 $display("%s %0d",X.m_op,X.m_addr);
29 end
30 endmodule : memq

Dynamically Sized Arrays
Normally, dynamically sized arrays are considered as fixed sized arrays when they are declared
as random variables. In certain cases, if the size of the dynamic array is referenced in a
constraint, the size will be treated as a random variable. The constraint solver will solve for the
size before resizing the array, and the solver will apply any remaining constraints on the
individual elements, treating the size as a state variable at that point.

If any of the elements contain class handles, you cannot treat the size of an array as a random
variable because SystemVerilog will never construct a class objects as part of the process of
solving constraints. A dynamic array of class handles must be randomized in at least two phases
to ensure proper construction of class objects.

By using the pre_randomize or post_randomize methods, a dynamic array of class handles can
be randomized in a single randomize operation. Depending on the relationship of the constraints
between the elements and other random variables in the class, you can either use pre_randomize
to solve for the size and the main randomize method to solve for the elements. You can also use
the main randomize method to solve for the size, and the post_randomize method to solve for
the elements. In the example below, the pre_randomize method is used to pick a size and
construct the elements in the dynamic array.

1 class array_pre;
2 rand Packet array[];
3 int m_array_size; // Note: not rand!
4 constraint c1

Constrained Random Verification
Useful Operations in Constraints

Advanced Verification Methodology Cookbook, 2.0 233
July 24, 2006

5 {
6 foreach (array[i]) array[i].m_data > i;
7 }
8
9 function void pre_randomize();

10 assert (std::randomize (m_array_size) with {m_array_size inside
{[12:16]};});

11 array = new[m_array_size];
12 foreach (array[i]) array[i] = new();
13 endfunction
14
15 endclass : array_pre

Alternatively, this example uses the post_randomize method to construct the dynamic array:

1 class array_post;
2 Packet array[]; // Note: not rand!
3 rand int m_array_size;
4 rand enum {kind_LITTLE, kind_MEDIUM, kind_BIG} m_kind;
5
6 constraint data_range
7 {
8 (m_kind == kind_LITTLE) -> m_array_size inside {[1:10]};
9 (m_kind == kind_MEDIUM) -> m_array_size inside {[11:19]};

10 (m_kind == kind_BIG) -> m_array_size inside {[20:23]};
11 }
12
13 function void post_randomize();
14 array = new[m_array_size];
15 foreach (array[i]) array[i] = new();
16 assert (std::randomize (array));
17 endfunction
18
19 endclass : array_post

Organization of Constraints

Per Design/Per Test Configuration
A package provides a handy mechanism for collecting global definitions that rarely change and
for swapping in a set of constants on a per test basis.

1 Example of using a package to set knobs
2 package Config; // per test package
3 parameter int width=16;
4 parameter int num_tests=20;
5 endpackage
6 package protocol; // per design package
7 class Packet;
8 rand byte m_header;
9 rand bit [Config::width-1:0] m_data;

10 static Packet scoreboard[$];
11 static int m_id;

Advanced Verification Methodology Cookbook, 2.0234

Constrained Random Verification
Advanced Topics

July 24, 2006

12 function new(int d,byte h=m_id++);
13 m_header=h; m_data =d;
14 endfunction
15 endclass
16 endpackage

Another Config package like the one shown below can be substituted for the Config package
above.

1 package Config; // per test package
2 parameter int width=32;
3 parameter int num_tests=512;
4 endpackage

Design Constraints
Certain design or valid constraints are required by the design to function properly. These
constraints must never be turned off or overridden. They represent physical limitations or errors
that the design is not able to handle. A complementary or one hot encoded input might be such a
case.

Give design constraints a unique prefix to identify them as being fixed. A suggested constraint
block prefix is: assert_<constraint_name>.

Error Injection
Keep constraints grouped by error modes in constraint blocks so they can be overridden.
Although it is convenient to group constraints in a single block to easily turn them on or off, if
you have to modify just one constraint in the block, you will have to re-write the rest of the
constraints.

Advanced Topics

Class Factories
Most testbench environments need to generate massive amounts of random data and repeatedly
call the constraint solver. Repeatedly randomizing a single instance of a class and then copying
it has some key benefits. Each time a new class instance is constructed, the solution space must
also be constructed before the call to randomize() can begin. When repeatedly randomizing a
class, call randomize() on a single instance of that class, then create a copy of that instance that
is sent to other portions of the test. Calling randomize() repeatedly on the same instance may
also save a lot of extra computation. The procedural process of creating class instances is part of
an object oriented concept called a class factory.

Make the single handle to the class being randomized statically available to the rest of the test
environment. A static handle is globally visible to the entire testbench. If a class has
dynamically modifiable, or state-dependant constraints, the handle can be modified from

Constrained Random Verification
Advanced Topics

Advanced Verification Methodology Cookbook, 2.0 235
July 24, 2006

anywhere in the testbench. Typically, random generators are distributed throughout the
testbench. All of the generators can be controlled from a central location. In the example below,
the stimgen module creates a static handle on line 12, and that module is instantiated twice in
the root module top. Another root module test controls all the stimulus generators from the
initial block on line 25.

1 module top;
2 addr_t a1,a2;
3 data_t d1,d2;
4
5 stimgen t1(a1,d1);
6 stimgen t2(a2,d2);
7 DUT U1(a1,a2,d1,d2); // definition not shown
8 endmodule : top
9

10 module stimgen(output addr_t address, data_t data);
11
12 Packet handle =new();
13
14 initial forever #1 begin : stimulus
15 Packet p;
16 assert (handle.randomize);
17 p = handle.clone();
18 put(p); // task to wiggle ports definition not shown
19 end
20
21 endmodule : stimgen
22
23 module test;
24
25 initial begin
26 top.t1.handle.high_address = 10;
27 top.t1.handle.low_address = 5;
28 top.t2.handle.high_address = 5;
29 top.t2.handle.low_address = 1;
30 #10 $finish;
31 end
32
33 endmodule : test

The class factory, together with inheritance, makes the stimulus generator a reusable piece of
code. Instead of simply calling a static new constructor, call a function to construct a class; this
is an abstract factory. That function can return an instance of the base class or any derived class.
Line 12 of the previous example can be rewritten to call an abstract factory that chooses
between Packet and Word_Packet:

1 Packet handle;
2
3 initial stimulus_generator(Abstract_Packet1());
4
5 function automatic Packet Abstract_Packet1();
6 Packet p1;
7 Word_Packet p2;
8 randcase
9 1: begin p1 = new; return p1; end

Advanced Verification Methodology Cookbook, 2.0236

Constrained Random Verification
Advanced Topics

July 24, 2006

10 1: begin p2 = new; return p2; end
11 endcase
12 endfunction

The non-OO function, Abstract_Packet1, may also be written as a method of a class in a
different class hierarchy from Packet. It too can be constructed by another abstract factory. The
class instance returned by the abstract factory is called a factory pattern, because it serves as the
blueprint for all the copies of the classes created by that class factory. This kind of structure also
serves to separate the generation of the pattern from the generation of stimulus, making both
more reusable.

Example of State Dependent Constraints
Even though constraints are declarative, they do not need to be viewed as static. Because
constraints can be based on expressions, it is possible to declare a constraint that changes
throughout the simulation based on the value of specific variables. Consider:

1 class Xaction;
2 int m_counter = 0;
3 rand enum {READ, WRITE, NOP} m_busop;
4 constraint startwriting {
5 if (m_counter < 10)
6 m_busop == WRITE;
7 else
8 m_busop dist {1:=NOP, 2:=READ};
9 }

10 endclass : Xaction

Here, the busop variable is constrained to be READ or NOP until the counter variable reaches
10, after which busop is constrained to be WRITE.

Similarly, a constraint can be written very much like a finite state machine to change the
constrained values more explicitly. The state variable is updated using the pre_randomize
method on line 12 in the example below.

1 class myState;
2 typedef enum {INIT, REQ, RD, WR...} State_t;
3 rand State_t m_state = INIT;
4 State_t prev_state;
5 bit req;
6 constraint fsm {if (prev_state == INIT)
7 {state == REQ; req == 1};
8 if (prev_state == REQ && rdwr == 1)
9 state == RD;

10 ...};
11 function void pre_randomize();
12 prev_state = m_state; // copy state value before randomizing
13 endfunction
14 endclass
15
16 myState ms1 = new;
17 ...

Constrained Random Verification
Advanced Topics

Advanced Verification Methodology Cookbook, 2.0 237
July 24, 2006

18 begin
19 st = ms1.randomize();
20 ...
21 end

Advanced Verification Methodology Cookbook, 2.0238

Constrained Random Verification
Advanced Topics

July 24, 2006

Assertion-Based Monitors

Advanced Verification Methodology Cookbook, 2.0 239
July 24, 2006

Chapter 10
Assertion-Based Monitors

Assertions can be a very powerful tool when used to check the behavior of a system, but
assertions can also be extremely useful in gathering coverage information about transactions
that have occurred. Up to this point, we have seen how to build testbench verification
components using SystemC and SystemVerilog imperative programming techniques. In this
chapter, we shift our focus to the new SystemVerilog assertion constructs, and demonstrate how
to create assertion monitor that combine both imperative and declarative programming
techniques.

Advanced Verification Methodology Cookbook, 2.0240

Assertion-Based Monitors

July 24, 2006

Assertion-Based Monitors
Assertion-Based Monitor

Advanced Verification Methodology Cookbook, 2.0 241
July 24, 2006

Assertion-Based Monitors

Assertion-Based Monitor

Figure 10-1. Testbench with Assertion-Based Monitor

Description
An assertion-based monitor serves two roles. First, it is a verification component whose purpose
is to convert signal-level activity into a sequence of transactions. Second, our assertion-based
monitor is a verification component whose purpose is to determine if the DUT is functioning as
intended.

What makes our assertion-based monitor unique is that we use SystemVerilog properties,
sequences, and cover constructs to match a sequence of events occurring on the bus. Our
assertion-based monitor uses an analysis port to transfer information to the coverage collector.

Driver

Assertion-Based
Monitor

Responder

Stimulus
Generator

Test Controller

Coverage
Collector

Advanced Verification Methodology Cookbook, 2.0242

Assertion-Based Monitors
Assertion-Based Monitor

July 24, 2006

The coverage collector then counts the occurrences of various kinds of events, which can be
used by our test controller to either terminate a given test, or potentially adjust parameters for a
given stimulus generator.

As we have seen, a scoreboard is also a verification component used to validate the end-to-end
behavior of a DUT. In contrast, an assertion-based monitor is generally used to validate a
DUT’s proper interface behavior. For example, in a bus-based SoC design, an assertion-based
monitor might be used within a testbench to validate that a DUT’s interface is compliant with
particular bus protocol. Our assertion-based monitor uses an analysis port to transfer status
information to a Test Controller, which processes errors identified by the assertion-based
monitor.

An assertion-based monitor is a passive verification component. In general, an assertion-based
monitor is constructed by mapping the observed bus interface control signals to conceptual
states for a particular protocol. Then, we create a set of declarative properties (or sequences)
that are used to monitor the observed interface behavior.

Key Concepts
• The assertion-based monitor is a timed transaction-level component that monitors

activity on the bus and converts from signal-level activity to a stream of transactions.

• The assertion-based monitor is a timed transaction-level component that serves as a
reference through a set of assertions.

Assertion-Based Monitors
Assertion-Based Monitor

Advanced Verification Methodology Cookbook, 2.0 243
July 24, 2006

Protocol Assertion-Based Monitor Example
We begin by introducing a simple, nonpipelined parallel bus protocol for our example. The
following figure illustrates a simple nonpipelined parallel bus design.

Figure 10-2. Simple Nonpipelined bus Design Example

In Table 10-1, we define the nonpipelined bus signals for our example design.

Table 10-1. Simple Nonpipelined bus Signal Description

We use a conceptual state-machine to describe the valid operation of the bus protocol.
Figure 10-3 illustrates its state diagram.

Name Summary Description

clk Bus clock The rising edge if clk is used to time all bus transfers

rst Bus reset An active high bus reset

sel Slave select signal This signal indicates that a slave has been selected.

en Strobe enable Use to time bus accesses

write Transfer direction When high, write access
When low, read access

addr[7:0] Address Address bus

rdata[7:0] Read data bus Read data driven when write is low

wdata[7:0] Write data bus Write data driven when write is high

Master SLAVE

clk

rst

sel

en

write

addr

rdata

wdata

Advanced Verification Methodology Cookbook, 2.0244

Assertion-Based Monitors
Assertion-Based Monitor

July 24, 2006

Figure 10-3. Simple Nonpipelined bus Design Example

After a reset (that is, rst == 1), our simple parallel bus is initialized to its default INACTIVE
state, which means both sel and en are de-asserted. To initiate a transfer, the bus moves into
the START state, where a responder (slave) select signal, sel, is asserted by the driver
(master). The bus only remains in the START state for one clock cycle, and will then move to
the ACTIVE state on the next rising edge of the clock. The ACTIVE state only lasts a single
clock cycle for the data transfer. Then, the bus will move back to the START state if another
transfer is required (for example, a burst operation), which is indicated by the sel signal
remaining asserted. Alternatively, if no additional transfers are required, the bus moves back to
the INACTIVE state when the driver de-asserts the slave’s select and bus enable signals.

Nonpipelined Bus Requirements
Prior to creating our assertion-based monitor for our simple nonpipelined parallel bus, we must
first identify a comprehensive list of natural language requirements. We begin by classifying the
requirements into categories, as shown in Table 10-2:

INACTIVE

sel == 0
en == 0

START

sel == 1
en == 0

ACTIVE

sel == 1
en == 1

setup

transfer setup

no transfer

no transfer

Assertion-Based Monitors
Assertion-Based Monitor

Advanced Verification Methodology Cookbook, 2.0 245
July 24, 2006

Table 10-2. Nonpipelined bus Interface Requirements

Assertion name Summary
Bus legal transition

a_state_reset_inactive Initial state after reset is INACTIVE
a_valid_inactive_transition ACTIVE state does not follow INATIVE
a_valid_start_transition INACTIVE state does not follow START
a_valid_active_transition ACTIVE state does not follow ACTIVE
a_no_error_state Bus state must be valid

Bus stable signals
a_sel_stable Slave select signals remain stable from START to

ACTIVE
a_addr_stable Address remains stable from START to ACTIVE
a_write_stable Control remains stable from START to ACTIVE
a_wdata_stable Data remains stable from START to ACTIVE

Advanced Verification Methodology Cookbook, 2.0246

Assertion-Based Monitors
Assertion-Based Monitor

July 24, 2006

Assertion-Based Monitors: Module-Based Monitor Example

Advanced Verification Methodology Cookbook, 2.0 247
July 24, 2006

Assertion-Based Monitors: Module-Based Monitor Example

SystemVerilog Implementation Details
To create a our assertion-based monitor for our simple nonpipelined bus, we begin by creating
some modeling code to map the current values of the sel and en control signals (driven by the
bus driver) to the conceptual bus states. We then write a set of assertions to detect protocol
violations by monitoring illegal bus state transitions.

60
61 if (monitor_mp.rst) begin
62 bus_reset = 1;
63 bus_inactive = 1;
64 bus_start = 0;
65 bus_active = 0;
66 bus_error = 0;
67 end
68 else begin
69 bus_reset = 0;
70 bus_inactive = ~monitor_mp.sel & ~monitor_mp.en;
71 bus_start = monitor_mp.sel & ~monitor_mp.en;
72 bus_active = monitor_mp.sel & monitor_mp.en;
73 bus_error = ~monitor_mp.sel & monitor_mp.en;
74 end
75
file:
topics/10_assertions/protocol_transactors_svm/protocol_monitor_mod.sv

We are now ready to write assertions for our bus interface requirements.

79
80 // ---
81 // REQUIREMENT: Bus legal states
82 // ---
83
84 property p_state_reset_inactive;
85 @(posedge monitor_mp.clk) disable iff (bus_reset)
86 $past(bus_reset) |-> (bus_inactive);
87 endproperty
88 assert property (p_state_reset_inactive) else begin
89 status = new();
90 status.set_err_trans_reset();
91 if (status_af != null) status_af.write(status);
92 end
93
94 property p_valid_inactive_transition;
95 @(posedge monitor_mp.clk) disable iff (bus_reset)
96 (bus_inactive) |=>
97 ((bus_inactive) || (bus_start));
98 endproperty
99 assert property (p_valid_inactive_transition) else begin
100 status = new();
101 status.set_err_trans_inactive();
102 if (status_af != null) status_af.write(status);
103 end
104

Advanced Verification Methodology Cookbook, 2.0248

Assertion-Based Monitors: Module-Based Monitor Example

July 24, 2006

105 property p_valid_start_transition;
106 @(posedge monitor_mp.clk) disable iff (bus_reset)
107 (bus_start) |=> (bus_active);
108 endproperty
109 assert property (p_valid_start_transition) else begin
110 status = new();
111 status.set_err_trans_start();
112 if (status_af != null) status_af.write(status);
113 end
114
115 property p_valid_active_transition;
116 @(posedge monitor_mp.clk) disable iff (bus_reset)
117 (bus_active) |=>
118 ((bus_inactive) || (bus_start));
119 endproperty
120 assert property (p_valid_active_transition) else begin
121 status = new();
122 status.set_err_trans_active();
123 if (status_af != null) status_af.write(status);
124 end
125
126 property p_valid_error_transition;
127 @(posedge monitor_mp.clk) disable iff (bus_reset)
128 (~bus_error);
129 endproperty
130 assert property (p_valid_error_transition) else begin
131 status = new();
132 status.set_err_trans_error();
133 if (status_af != null) status_af.write(status);
134 end
135
file:
topics/10_assertions/protocol_transactors_svm/protocol_monitor_mod.sv

Our first requirement (p_state_reset_inactive) states that after a reset, the bus must be
initialized to an INACTIVE state (which means the sel signals and en are de-asserted). This
defines the valid transition of the bus state after a reset. Similarly, we have written assertions for
all valid bus transition requirements, which are based on our previously defined protocol
conceptual state-machine.

Our final set of assertions specify that the bus controls, address, and write data signals must
remain stable between a bus START and bus ACTIVE state transition.

137
138 // ---
139 // REQUIREMENT: Bus must remain stable
140 // ---
141
142 property p_bsel_stable;
143 @(posedge monitor_mp.clk) disable iff (bus_reset)
144 (bus_start) |=> $stable(bus_sel);
145 endproperty
146 assert property (p_bsel_stable) else begin
147 status = new();
148 status.set_err_stable_sel();

Assertion-Based Monitors: Module-Based Monitor Example

Advanced Verification Methodology Cookbook, 2.0 249
July 24, 2006

149 if (status_af != null) status_af.write(status);
150 end
151
152 property p_baddr_stable;
153 @(posedge monitor_mp.clk) disable iff (bus_reset)
154 (bus_start) |=> $stable(bus_addr);
155 endproperty
156 assert property (p_baddr_stable) else begin
157 status = new();
158 status.set_err_stable_addr();
159 if (status_af != null) status_af.write(status);
160 end
161
162 property p_bwrite_stable;
163 @(posedge monitor_mp.clk) disable iff (bus_reset)
164 (bus_start) |=> $stable(bus_write);
165 endproperty
166 assert property (p_bwrite_stable) else begin
167 status = new();
168 status.set_err_stable_write();
169 if (status_af != null) status_af.write(status);
170 end
171
172 property p_bwdata_stable;
173 @(posedge monitor_mp.clk) disable iff (bus_reset)
174 (bus_start) && (bus_write) |=> $stable(bus_wdata);
175 endproperty
176 assert property (p_bwdata_stable) else begin
177 status = new();
178 status.set_err_stable_wdata();
179 if (status_af != null) status_af.write(status);
180 end
181
file:
topics/10_assertions/protocol_transactors_svm/protocol_monitor_mod.sv

If an error is detected, the failure information is passed through an anaylsis_fifo (for
example, status_af) back to the Test Controller, which will then print an appropriate error
message and terminate the simulation process.

For our coverage property, we write a sequence (within a property) to track the size of a bus
read or write burst, as follows:

183
184 property p_burst_size;
185 int psize;
186
187 @(posedge monitor_mp.clk)
188 ((bus_inactive), psize=0)
189 ##1 ((bus_start, psize++, build_transaction(psize))
190 ##1 (bus_active))[*1:$]
191 ##1 (bus_inactive);
192 endproperty
193
194 cover property (p_burst_size);
195

Advanced Verification Methodology Cookbook, 2.0250

Assertion-Based Monitors: Module-Based Monitor Example

July 24, 2006

file:
topics/10_assertions/protocol_transactors_svm/protocol_monitor_mod.sv

The psize local variable, defined within the above sequence, increments each time a new data
word is transferred for a given bus transaction burst. The burst size and type (for example, read
or write), is then passed to the build_transaction function, which is shown below:

197
198 function void build_transaction(int psize);
199 protocol_transaction tr;
200
201 tr = new();
202 if (bus_write) begin
203 tr.set_write();
204 tr.data = bus_wdata;
205 end
206 else begin
207 tr.set_read();
208 tr.data = bus_rdata;
209 end
210 tr.burst_count = psize;
211 tr.addr = bus_addr;
212
213 if (trans_af != null) trans_af.write(tr);
214 endfunction
215
file:
topics/10_assertions/protocol_transactors_svm/protocol_monitor_mod.sv

The build_transaction function passes the captured burst size and type information to an
analysis fifo, which was defined in the top module of our testbench:

43 // channels
44
45 analysis_fifo #(protocol_transaction)
46 trans_fifo = new(“trans_fifo”);
47 analysis_fifo #(protocol_status)
48 status_fifo = new(“status_fifo”);
49
50 tlm_fifo #(protocol_transaction) m_response_fifo =
51 new(“m_response_fifo”);
52 tlm_fifo #(protocol_transaction) s_response_fifo =
53 new(“s_response_fifo”);
file: topics/10_assertions/01_monitor_svm/top.sv

The coverage collector will then measure the various burst transaction sizes, and when a
threshold of various burst sizes has been exercised, the coverage collector will terminate the
stimulus generator, and finish the simulation process.

Assertion-Based Monitors
Testbench with Assertion-Based Checker

Advanced Verification Methodology Cookbook, 2.0 251
July 24, 2006

Assertion-Based Monitors

Testbench with Assertion-Based Checker

Figure 10-4. Testbench with Assertion-Based Checker

Description
Creating an assertion-based checker provides an effective means for isolating bus interface
failures. Within a testbench, an assertion-based checker can be used to alert a test controller of a
protocol violation and let the test controller take an appropriate action.

In this example, we employ a driver and a responder transactor to model our nonpipelined bus
actions. Note that there is no DUT in our example testbench. Either the driver or responder
transactor could be replaced with a real DUT in the future when one becomes available.
However, this example illustrates how a testbench can be constructed and debugged prior to
delivering real RTL design components.

Key Concepts
• Integrating an assertion-based checker into a complete testbench

• A driver and a responder transactor can be combined to creating a working testbench,
which permits debugging our assertion-based checker (without the need for a real RTL
design).

Master
Driver

Assertion-Based
Checker

Stimulus
Generator

Slave
Responder

Stimulus
Generator

Test Controller

Advanced Verification Methodology Cookbook, 2.0252

Assertion-Based Monitors
Testbench with Assertion-Based Checker

July 24, 2006

Assertion-Based Monitors: Module-Based Transactor Example

Advanced Verification Methodology Cookbook, 2.0 253
July 24, 2006

Assertion-Based Monitors: Module-Based Transactor Example

SystemVerilog Implementation Details
For our module-based testbench example, all verification components are constructed as
modules. The channels, which are components that define the semantics of the communication,
are implemented as classes and are used to connect the stimulus generators to driver and
responder transactors.

For example, we use two analysis_fifo’s and tlm_fifo’s within our top.sv module to
implement channels as follows:

43 // channels
44
45 analysis_fifo #(protocol_transaction)
46 trans_fifo = new(“trans_fifo”);
47 analysis_fifo #(protocol_status)
48 status_fifo = new(“status_fifo”);
49
50 tlm_fifo #(protocol_transaction) m_response_fifo =
51 new(“m_response_fifo”);
52 tlm_fifo #(protocol_transaction) s_response_fifo =
53 new(“s_response_fifo”);
file: topics/10_assertions/01_monitor_svm/top.sv

Then, tlm_fifo channels connect the stimulus generators to the driver and responder
transactors, as demonstrated below:

55 // verification components
56
57 protocol_stimulus_mod
58 stimulus(.m_response_fifo(m_response_fifo) ,
59 .s_response_fifo(s_response_fifo));
60
61 protocol_driver_mod
62 master (.response_fifo(m_response_fifo),
63 .driver_mp(nonpiped_bus.driver_mp));
64
65 protocol_responder_mod
66 slave (.response_fifo(s_response_fifo),
67 .responder_mp(nonpiped_bus.responder_mp));
file: topics/10_assertions/01_monitor_svm/top.sv

Interfaces

To create a bus that we can use to connect our testbench driver to a responder transactor and our
assertion-based monitor, we use a SystemVerilog interface, as demonstrated below:

24 interface protocol_pins_if(input clk , input rst);
25
26 parameter int DATA_SIZE = 8;
27 parameter int ADDR_SIZE = 8;

Advanced Verification Methodology Cookbook, 2.0254

Assertion-Based Monitors: Module-Based Transactor Example

July 24, 2006

28
29 bit sel;
30 bit en;
31 bit write;
32 bit [DATA_SIZE-1:0] wdata;
33 bit [DATA_SIZE-1:0] rdata;
34 bit [ADDR_SIZE-1:0] addr;
35
36 modport driver_mp (
37 input clk , rst ,
38 output sel , en , write , addr ,
39 output wdata ,
40 input rdata
41);
42
43 modport responder_mp (
44 input clk , rst ,
45 input sel , en , write , addr ,
46 input wdata ,
47 output rdata
48);
49
50 modport monitor_mp (
51 input clk , rst ,
52 input sel , en , write , addr ,
53 input wdata ,
54 input rdata
55);
56
57 endinterface
file: topics/10_assertions/protocol_transactors_svm/protocol_pins_if.sv

With this single interface description, we can then reuse the bus definition across multiple
transactors. This means that if we make a change to the interface, it is reflected automatically in
all connected transactors that share this interface.

For example, in our testbench’s driver transactor, we use the SystemVerilog driver_mp
modport as illustrated below:

23 module protocol_driver_mod(
24 input tlm_fifo #(protocol_transaction) response_fifo ,
25 interface.driver_mp driver_mp
26);
file:
topics/10_assertions/protocol_transactors_svm/protocol_driver_mod.sv

Then, all references to our bus interface are made through the driver_mp modport:. For
example, our driver will drive the bus interface sel and en signals using modport assignments
as follows:

145 // Setup bus controls for write
146
147 if (m_transaction.is_write()) begin
148 driver_mp.write <= 1;
149 driver_mp.wdata <= m_transaction.get_data() ;

Assertion-Based Monitors: Module-Based Transactor Example

Advanced Verification Methodology Cookbook, 2.0 255
July 24, 2006

150 end
151 else begin
152 driver_mp.write <= 0;
153 end
file:
topics/10_assertions/protocol_transactors_svm/protocol_driver_mod.sv

Similarly, our responder tansactor uses the responder_mp modport from our interface:

23
24 module protocol_responder_mod(
25 input tlm_fifo #(protocol_transaction) response_fifo ,
26 interface.responder_mp responder_mp
27);
28
file:
topics/10_assertions/protocol_transactors_svm/protocol_responder_mod.sv

All references to the bus interface within the responder are made through the responder_mp
modport.

Finally, our assertion-based monitor uses the monitor_mp modport from our interface as
follows:

23
24 module protocol_monitor_mod(
25 interface.monitor_mp monitor_mp ,
26 input analysis_fifo #(protocol_transaction) trans_af ,
27 input analysis_fifo #(protocol_status) status_af
28);
29
file:
topics/10_assertions/protocol_transactors_svm/protocol_monitor_mod.sv

Driver and Responder Modeling Bus Traffic

The driver (protocol_driver_mod.sv) and the responder (protocol_responder_mod.sv)
each model the previously defined conceptual-state machine for our nonpipelined bus protocol,
and then generate and drive the appropriate data and control signals based on its understanding
of the protocol. Our assertion-based monitor then ensures that the protocol definition simulated
between the driver and the responder is adhered to, as well as convert the signal-level and cycle
accurate bus operations back into transactions that it output through an analysis port. The
stimulus generator transactors provide transaction content to the driver (for a bus write) and
responder (for a bus read). The driver and responder then provide the necessary timing and
appropriate control signals defined by our protocol.

For example, the following code demonstrates the driver setting up the data and address
received from its stimulus generator (via a channel) as well as bus controls, to perform a bus
write operation.

62 // Get stimulus generator output for transaction

Advanced Verification Methodology Cookbook, 2.0256

Assertion-Based Monitors: Module-Based Transactor Example

July 24, 2006

63
64 if(response_fifo.try_get(m_transaction)) begin
65
66 // If not idle, setup bus controls to transition to a START state
67
68 driver_mp.write <= 0;
69 driver_mp.en <= 0;
70
71 if (~m_transaction.is_idle()) begin
72 driver_mp.sel <= 1;
73 m_state <= START;
74 end
75 else begin
76 driver_mp.sel <= 0;
77 m_state <= INACTIVE;
78 end
79
80 driver_mp.addr <= m_transaction.get_addr() ;
81
82 // Setup bus controls for write
83
84 if (m_transaction.is_write()) begin
85 driver_mp.write <= 1;
86 driver_mp.wdata <= m_transaction.get_data() ;
87 end
88 end
file:
topics/10_assertions/protocol_transactors_svm/protocol_driver_mod.sv

Similarly, the following code demonstrates the responder setting up the data received from its
stimulus generator to complete a bus read operation.

54
55 // If read transaction, get generator output for transaction
56
57 if (~responder_mp.write) begin
58
59 // Get stimulus generator output for read transaction
60
61 if(response_fifo.try_get(s_transaction)) begin
62
63 responder_mp.rdata <= s_transaction.data;
64
file:
topics/10_assertions/protocol_transactors_svm/protocol_responder_mod.sv

The SystemVerilog AVM Library
Introduction

Advanced Verification Methodology Cookbook, 2.0 257
July 24, 2006

Appendix A
The SystemVerilog AVM Library

Introduction
The examples in the cookbook all use an underlying utility library of classes and utilities for
building verification components (which are referred to as VIP). This appendix describes the
SystemVerilog library in detail, describing all the base classes, their members, and how to use
them.

Reporting
The reporting facility provides a means for displaying messages at various severity levels and
for controlling when those messages are displayed.

Basic Reporting Methods
A report is issued by a VIP by using one of the reporting methods:

avm_report_message(string id, string mess, int verbosity = 3);
avm_report_warning(string id, string mess, int verbosity = 2);
avm_report_error(string id, string mess, int verbosity = 1);
avm_report_fatal(string id, string mess, int verbosity = 0);

The report handler for each reporting call determines the specific actions that occur. The top
level report handler provides default settings for reports issued from any module, interface or
subclass of avm_env. In addition, each avm_named_component has its own report handler. By
default, each report handler is given a standard configuration.

Verbosity Level
A report handler has a maximum verbosity level. If the verbosity level of a report is greater than
the maximum verbosity level, then it is simply ignored. A report handler looks up the
appropriate action associated with a (severity,id) pair and then processes the report accordingly.

The maximum verbosity level of any report handler can be changed using the following
method:

function void
avm_set_verbosity_level(int verbosity_level ,

input avm_recursion_e recurse = THIS_LEVEL_ONLY);

Advanced Verification Methodology Cookbook, 2.0258

The SystemVerilog AVM Library
Reporting

July 24, 2006

In this and all subsequent “configuration setting” methods, there is an optional final parameter
which can take two values: THIS_LEVEL_ONLY (the default value) or
THIS_LEVEL_AND_BELOW. The former applies the setting only to this object’s report
handler, while the latter also applies the setting to all the object’s children, recursively down the
hierarchy.

Actions
Besides simply displaying a message, a call to a reporting method may invoke additional
actions. The possible actions are defined by the enumerated type action_type:

typedef enum action
{
 NO_ACTION= 4'b0000 ,
 DISPLAY = 4'b0001 ,
 LOG = 4'b0010 ,
 COUNT = 4'b0100 ,
 EXIT = 4'b1000
} action_type;

These can be or’ed together using the bitwise or operator ‘|’ to produce combined actions. The
default actions associated with each severity are:

severity_actions[MESSAGE] = DISPLAY | LOG;
severity_actions[WARNING] = DISPLAY | LOG;
severity_actions[ERROR] = DISPLAY | LOG | COUNT;
severity_actions[FATAL] = DISPLAY | LOG | EXIT;

Setting Actions
Actions can be changed by using any of the three methods shown below:

function void
avm_set_severity_action(input severity s , input action a ,

input avm_recursion_e recurse = THIS_LEVEL_ONLY);

function void
avm_set_id_action(input string id , input action a ,

input avm_recursion_e recurse = THIS_LEVEL_ONLY);

Table A-1. Report Actions

Action Identifier Action to be taken

DISPLAY Display the report on the standard output.

LOG Send the report to an appropriate file.

COUNT Count up to a threshold before exiting.

EXIT Exit the simulation immediately.

The SystemVerilog AVM Library
Reporting

Advanced Verification Methodology Cookbook, 2.0 259
July 24, 2006

function void
avm_set_severity_id_action(input severity s , input string id , input

 action a ,
input avm_recursion_e recurse = THIS_LEVEL_ONLY);

The first of these associates an action with a particular severity, the second with an id, and the
third with a (severity,id) pair. An action associated with an id overrides an action associated
with a severity, and an action associated with a (severity,id) pair overrides actions associated
with either the severity, or the id on its own.

File Output
If a report has the LOG action associated with it, the report handler looks to see if there is an
appropriate file handle available to log the report.You can associate a file handle with the report
handler as a whole (the default file handler), with a severity, an id, or a (severity,id) pair. Report
handlers do not open or close files: you do this. Since file handles are ordinary verilog file
handles, you can combine many files in the same handle if you want the same report to go to
many different files.

The methods to associate files handles with the report handler are as follows:

function void
avm_set_default_file(input FILE f,

input avm_recursion_e recurse = THIS_LEVEL_ONLY);

function void
avm_set_severity_file(input severity s, input FILE f,

 input avm_recursion_e recurse = THIS_LEVEL_ONLY);

function void
avm_set_id_file(input string id , input FILE f,

input avm_recursion_e recurse = THIS_LEVEL_ONLY);

function void
avm_set_severity_id_file(input severity s, input string id,

input FILE f,
input avm_recursion_e recurse = THIS_LEVEL_ONLY);

A file associated with a severity overrides the default file for this report handler, a file
associated with an id overrides a file associated with a severity, and a file associated with a
(severity,id) pair overrides any other association. If none of these methods have been called for
this report handler, then no file output will occur since the “default” default file handle is zero.

The Report Formatter
The report formatter determines how actions are processed and how reports are formatted. It
also stores the max_quit_count which controls how many COUNT events are seen before
exiting the simulation.

Advanced Verification Methodology Cookbook, 2.0260

The SystemVerilog AVM Library
Building Blocks

July 24, 2006

Using the Formatter
Typically, you will use the report formatter to set the max_quit_count variable and use the
summarize method to get usage statistics:

class avm_report_formatter;
 static int max_quit_count = 1;
 static function void summarize(FILE f = 0);
 …
endclass

Advanced Topics
This section addresses features whose role is mainly to facilitate tool integrations.

You can also write your own report formatter to override the standard report formatter, using
the global method:

function void set_report_formatter(avm_report_formatter rf);

The new report formatter must inherit from avm_report_formatter, and can be used to
override either of the two virtual methods:

class avm_report_formatter;
 ..
 virtual function
 string compose_message(severity s , string name , string id , string
mess);

 virtual function void
 process_report(action a , FILE f , string m);

endclass

Compose_message is the method which actually formats the report from its constituent parts,
while process report decodes the action and acts appropriately.

Building Blocks
The three main AVM classes for building test benches are avm_env, avm_named_component
and avm_verification_component. In this section we explain each class and how to use it to
build verification components and testbenches.

avm_named_component
In the AVM all verification components are derived from named components. Another way to
say that is that all verification components are named components. A named component
manages the hierarchy of the testbench. It has a hierarchical name, an optional parent, a
(possibly empty) list of children, a local report handler, and methods to manage the connectivity
of its children.

The SystemVerilog AVM Library
Building Blocks

Advanced Verification Methodology Cookbook, 2.0 261
July 24, 2006

Constructor
function new(string name, avm_named_component parent = null);

The constructor has two arguments: the name and an optional parent. The string passed into the
constructor is a local instance name (which must be unique): avm_named_component assembles
the full hierarchical name automatically.

Only children of the avm_env, that is top level components, or components without parents,
should omit the parent argument, otherwise use “this”:

class my_env extends avm_env;

 pipelined_bus_hiearchical_component m_component;

 function new;
 m_component = new(“hierarchical_component”); // no parent specified
 endfunction

endclass

class pipelined_bus_hierarchical_component extends avm_named_component;

 address_phase_component m_address_component;
 data_phase_component m_data_component;

 function new(string name , avm_named_component parent = null);
 super.new(name , parent); // register name and parent with named
component

 m_address_component = new(“address_component” , this);
 m_data_component = new(“data_component” , this);
 endfunction

endclass

This will create two leaf level instances called hierarchical_component. address_component
and hierarchical_component.data_component.

As these named objects are created, they are automatically inserted into a repository that can be
accessed at any time. This repository is called s_named_object_repository, and is defined as
follows:

class avm_named_component;
 …
 static avm_named_component s_named_object_repository[string];
 …
endclass

This repository can be particularly useful for configuring specific components from the
configure method of the environment class (avm_env).

Advanced Verification Methodology Cookbook, 2.0262

The SystemVerilog AVM Library
Building Blocks

July 24, 2006

Report Method
Avm_named_component has a report_method, which can be overridden in any component.
This report method can be called at any time during the execution of the testbench, but is always
called automatically when the environment class finishes the execute phase. A typical use is to
report on the status of a scoreboard at the end of a test.

class avm_named_component;
 …
 virtual function void report;
 return;
 endfunction
 …
endclass

class my_scoreboard extends avm_named_component;
 local int m_successes , m_failures;
 …
 virtual function void report;
 string report_str;

 $sformat(report_str , “%d success and %d failures” , m_successes ,
m_failures);
 avm_report_message(“my scoreboard report” , report_str);
 endfunction
endclass

Report Handling
Each avm_named_component has its own report handler and all the methods described in
section Constructor. The name sent to the report handler is the full hierarchical name of the
instance as described in section Constructor, and THIS_LEVEL_AND_BELOW settings are
forwarded to the children that registered this named component as their parent during
construction.

Hierarchical Connectivity
This section assumes a familiarity with the concepts of pure virtual interface, ports, and exports.
These concepts are explained in the sections entitled Wrappers and Multiple Inheritance and
Port / Export Coding Conventions in this appendix.

The SystemVerilog AVM Library
Building Blocks

Advanced Verification Methodology Cookbook, 2.0 263
July 24, 2006

Figure A-1. Generic Hierarchical Component

Figure A-1 shows a generic hierarchical component. It contains an “inner core” and two
channels (possibly tlm_fifos). The inner core has a virtual interface that is connected through
the hierarchy to the DUT. It gets incoming transactions from two channels, which put interfaces
are exported to the rest of the testbench, so that other VIPs can send transactions to this VIP. It
also has a port that it uses to put interesting transactions to the outside world.

There are three types of connection shown here:

• internal connections between children of this object, which go from port to export

• interfaces provided by children of this VIP, which must be exported to the outside

• interfaces required by children of this VIP, which must be imported from outside

The avm_named_component provides three separate methods that must be used for these three
different kinds of connectivity:

protected virtual function void connect;
protected virtual function void export_connections;
protected virtual function void import_connections;

An example of what the code might look like for the diagram above is shown below:

class generic_vip extends avm_named_component;
 tlm_put_if #(transaction) put_port;
 tlm_put_if #(transaction) put_export_1 , put_export_2;

 virtual bus_if m_bus_if;

Advanced Verification Methodology Cookbook, 2.0264

The SystemVerilog AVM Library
Building Blocks

July 24, 2006

 local inner_core m_inner_core;
 local tlm_fifo #(transaction) m_channel_1 , m_channel_2;

 function new(string name , avm_named_component parent = null);
 super.new(name , parent);

 // create all the child components, with parent == this
 m_inner_core = new(“inner_core” , this);
 m_channel_1 = new(“channel_1” , this);
 m_channel_2 = new(“channel_2” , this);

 endfunction

 function void connect; // internal connections : child.port =
child.export
 m_inner_core.get_port_1 = m_channel_1.get_export;
 m_inner_core.get_port_2 = m_channel_2.get_export ;
 endfunction

 function void export_connections; // export connections : export =
child.export
 put_export_1 = m_channel_1.put_export;
 put_export_2 = m_channel_2.put_export;
 endfunction

 function void import_connections; // import connections : child.port =
port
 m_inner_core.put_port = port_port;
 m_inner_core.m_bus_if = m_bus_if ;
 endfunction

endclass

The ordering of the calls to connect, export_connections and import_connections is controlled
by non user visible methods in avm_env and avm_named_component. The ordering is
export_connections, connect, import connections. Export_connections and connect are
performed bottom up, while import_connections is performed top down.

avm_verification_component
Avm_verification_component extends avm_named_component. The only feature it adds to
named component is the ability to automatically kick off a run task at the beginning of the
simulation. It also provides overloadable methods to suspend, resume, and kill this run method,
as well as any processes it may have forked.

The typical use for a verification component is a transactor that needs to start at time zero and
continue until the simulation finishes, although some scoreboards may also need this capability.
Typically speaking, stimulus generators are not verification components, since they need to be
started at some time other than time zero, and often have a finite end point.

virtual class avm_verification_component extends avm_named_component;
 …
 local process m_main_process;

The SystemVerilog AVM Library
Building Blocks

Advanced Verification Methodology Cookbook, 2.0 265
July 24, 2006

 pure virtual task run;

 virtual function void suspend;
 m_main_process.suspend;
 endfunction

 virtual task resume;
 m_main_process.resume;
 endtask

 virtual function void kill;
 m_main_process.kill;
 endfunction

endclass

A transactor (or other component which extends avm_verification_component) must supply
a run task, since this is its defining characteristic. Typically this is a forever loop which waits on
an edge of a clock and implements a state machine.

M_main_process is the process id of this run task: it is set by the non user visible methods. The
default implementations of the suspend, resume, and kill methods operate on this process and
this process only. If the run method forks off more processes, these processes will also have to
be managed in non default implementations of these three methods.

avm_env
The top level environment object must extend avm_env. The creator of a testbench declares a set
of components in a subclass of avm_env and creates them in the constructor of this subclass.
After construction, the only user visible public method is the task do_test, which calls
sequences the phases of the testbench.

The phases of the avm_env are:

1. Create (in constructor of subclass)

2. Connect

3. Configure

4. Execute

5. Report

The subclass of avm_env must provide connect and execute methods; it may provide configure
and report methods. The calls to the various connect, run, report, and kill methods are issued at
the correct time by do_test method.

virtual class avm_env;

 virtual task do_test;

Advanced Verification Methodology Cookbook, 2.0266

The SystemVerilog AVM Library
Core AVM Classes and Components

July 24, 2006

 avm_named_component::export_top_level_connections;
 connect();
 avm_named_component::import_top_level_connections;

 configure;
 avm_verification_component::run_all;
 execute;

 report;
 avm_named_component::report_all;
 avm_verification_component::kill_all;

 endtask

 pure virtual function void connect;

 virtual function void configure; // calls to config interfaces of
testbench components
 return;
 endfunction

 pure virtual task execute; // execute phase

 virtual function void report; // report
 avm_report_message("avm_env" , "Finished Test");
 return;
 endfunction

endclass

Core AVM Classes and Components

avm_transaction
The avm_transaction class is a base class, but most of the requirements of an
avm_transaction are not enforced by the syntax. In order to allow the avm and tlm libraries to
work, we need methods to print, compare and clone transactions. Only the first of these is
actually dealt with by the methods in the base class.

For any given transaction, T, we need to do four things:

• Inherit from avm_transaction

• Implement the virtual function string convert2string

• Implement a function bit comp(input T t);

• Implement a function T clone();1

1. These three methods are equivalent to the << operator, the == operator, and the copy constructor in C++.
All three of them can be as deep or as shallow as needed.

The SystemVerilog AVM Library
Core AVM Classes and Components

Advanced Verification Methodology Cookbook, 2.0 267
July 24, 2006

The convert2string method returns a string which describes the transaction. This is usually
used in conjunction with the reporting library.

The comp method is for determining equality of two objects. It returns a bit indicating whether
the transaction t is the same as this. The comp method is often used in scoreboards, where you
are making some kind of comparison between two streams of data. For example:

if(a.comp(b)) begin
 avm_report_message("transactions match" , a.convert2string());
end
else begin
 $sformat(error_str , "%s does not match %s" , a.convert2string() ,
b.convert2string());
 avm_report_warning("transaction mismatch" , error_str);
end

The clone method returns a handle to a newly allocated copy of this. The clone method is
particularly useful in stimulus generators, where we need to create a new copy of the transaction
before sending the transaction into the rest of the verification environment. For example:

function void generate_stimulus(input transaction generator);
 transaction t;

 for(int i = 0; I < 10; i++) begin
 assert(generator.randomize());
 t = generator.clone();
 stimulus_port.put(t);
 end
endfunction

If we did not clone the generator each time we randomized it, each new transaction would
simply overwrite the previous one. This could be disastrous if the previous transaction was still
being used somewhere in the verification environment — for example, in a transactor before
being applied to the bus, or in a scoreboard waiting to be compared with some other transaction.

The convert2string, comp and clone methods are assumed to exist by other components in
the tlm library.

avm_stimulus
Avm_stimulus is both a generic random unidirectional stimulus generator and a prototype that
can serve as the basis for other stimulus generators. It assumes that both the parameters
trans_type and the generator class both have clone methods.

The are a number key points about the design of avm_stimulus:

• It is not simply a class factory: it is a verification component with a put port, which is
ready for connection to channels such as tlm_fifo.

• The trans_type parameter is the type of the transaction sent out across this put port.

Advanced Verification Methodology Cookbook, 2.0268

The SystemVerilog AVM Library
Core AVM Classes and Components

July 24, 2006

• A new copy of trans_type is cloned before it is sent out across the put port.

• Trans_type should have as few constraints as possible.

• Trans_type transactions are generated by subclasses of trans_type which in general
will have many more, test specific constraints added in the sub class. So, in general,
trans_type is not the same as the class used to do the stimulus generation.

• The generate_stimulus method is virtual to allow the addition of directed tests before
or after the constrained random generation.

An avm_stimulus example:

class write_request extends mem_request
 constraint write_only { this.m_type == MEM_WRITE; }
 endclass

 class read_request extends mem_request
 constraint read_only { this.m_type == MEM_READ; }
 endclass

 avm_stimulus #(request_t) m_stimulus;

 task execute;

 m_stimulus.generate_stimulus(m_write_gen , 10);
 m_stimulus.generate_stimulus(m_read_gen , 10);

 fork
 m_stimulus.generate_stimulus;
 terminate;
 join
endtask

task terminate;
 #100;
 m_stimulus.stop_stimulus_generation;
endtask

Mem_request in the example above has no constraints whatever, since any values in the request
are valid. We provide two local constraint classes, generating only write and read transactions,
respectively. We then generate a sequence of 10 writes, 10 reads and an unbounded sequence of
unconstrained requests until the timeout specified in the terminate task.

In the code example above, we simply use the process control capabilities in SystemVerilog to
generate stimulus in sequence or in parallel. Alternatively, while it is not shown in the example,
we could achieve more sophisticated stimulus control by using the fine grained process control
methods suspend, resume, and kill.

analysis_if and analysis_port
The analysis interface is a parameterized virtual class which has a single pure virtual function:

The SystemVerilog AVM Library
Core AVM Classes and Components

Advanced Verification Methodology Cookbook, 2.0 269
July 24, 2006

virtual class analysis_if #(type T = int);
 pure virtual function void write(input T t);
endclass

This interface is used to broadcast interesting transactions from components such as monitors.
Since monitors cannot be blocked in any way, the write method is a function. Since, in general,
we need to connect 0, 1, or many subscribers to any particular monitor, we provide an analysis
port. An analysis port is simply a thin layer around a list of analysis interfaces. In effect, it is a
verification specific implementation of the Observer pattern.

class analysis_port #(type T = int) extends analysis_if #(T);
 local analysis_if #(T) if_list[$];

 function void register(input analysis_if #(T) i);
 if_list.push_back(i);
 endfunction

 function void write(input T t);
analysis_if #(T) temp;

 for(int i = 0; i < if_list.size; i++) begin
 if_list[i].write(t);
 end
 endfunction
endclass

A monitor instantiates and creates one or more analysis ports. Then one or more subscribers
may choose to register with each of those analysis ports to receive the broadcast transactions.

class monitor extends avm_verification_component;
 analysis_port #(transaction) ap;

 function new(string name , avm_named_component parent = null);
 super.new(name , parent);
 ap = new;
 endfunction

 task run;
 transaction t;
 forever begin
 t = new;
 …
 ap.write(t);
endclass endtask

class my_env extends avm_env;
 monitor m_monitor_1 , m_monitor_2;
 avm_in_order_class_comparator #(transaction) m_comparator;
 coverage_object m_coverage;
 // constructor omitted

 function void connect;
 m_monitor_1.ap.register(m_comparator.before_export);
 m_monitor_1.ap.register(m_coverage.analysis_export);

 m_monitor_2.ap.register(m_comparator.after_export);

Advanced Verification Methodology Cookbook, 2.0270

The SystemVerilog AVM Library
Core AVM Classes and Components

July 24, 2006

 endfunction
endclass

The code above connects one side of a comparator to one monitor and the other side of the
comparator to another monitor. It also connects up the first monitor to a coverage object.

The analysis port both has a list of analysis interfaces, and implements the analysis interface
itself. This is useful when doing hierarchical binding of analysis ports:

class hierarchical_monitor extends avm_named_component;
 analysis_port #(transaction) ap;

 local internal_monitor m_internal_monitor;

 function new(string name , avm-named_component parent = null);
 super.new(name , parent);

 ap = new;
 m_internal_monitor = new(‘internal monitor” , this);
 endfunction

 function void import_connections;
 m_internal_monitor.ap.register(ap);
 endfunction
endclass

avm_in_order_comparator
The avm_in_order_comparator component compares two streams of transactions. These
transactions are being broadcast by an analysis_port, so avm_in_order_comparator
provides two analysis exports to connect up to these two streams of data.

Internally, these two streams of data are stored in analysis fifos and are then compared in pairs
as whenever there is data in both fifos.

The report method of avm_in_order_comparator reports on the number of matched and
mismatched pairs.

There are, in fact, a number of variants of avm_in_order_comparator:

• avm_in_order_class_comparator compares streams of classes, and relies on the
existence of the a comp method in the transaction type.

• avm_in_order_built_in_comparator compares streams of built in types, using the ==
operator defined by SystemVerilog.

• avm_in_order_class_comparator_external compares streams of classes, but assumes
the fifos are external to the comparator.

The SystemVerilog AVM Library
Core AVM Classes and Components

Advanced Verification Methodology Cookbook, 2.0 271
July 24, 2006

• avm_in_order_built_in_comparator_external compares streams of built in types, but
assumes the fifos are external to the comparator.

• avm_in_order_comparator_module is a hybrid module which has two analysis fifos
in its port list.

• avm_in_order_class_comparator_module is a hybrid module which has two analysis
fifos in its port list, and which compares two streams of classes using their comp
methods.

• avm_in_order_built_in_comparator_module is a hybrid module which has two
analysis fifos in its port list, and which compares two streams of built in types using the
== operator defined by SystemVerilog.

avm_subscriber
The avm_subscriber component is a parameterized, named component which provides an
analysis export. Typically, it is used to dump of the contents of the transaction, or for coverage.

virtual class avm_subscriber #(type T = int) extends
avm_named_component;
 typedef avm_subscriber #(T) this_type;

 analysis_imp #(this_type , T) analysis_export = new(this);

 function new(string name , avm_named_component p = null);
 super.new(name , p);
 endfunction

 pure virtual function void write(input T t);
endclass

class my_transaction_dump extends avm_subscriber #(transaction);
 function void write(input transaction t);
 avm_report_message(“dump” , t.convert2string);
 endfunction
endclass

class my_coverage extends avm_subscriber #(transaction);
 local bit [7:0] data;

 covergroup byte_cov;
 top_four : coverpoint data[7:4];
 bottom_four : coverpoint data[3:0];
 endgroup

 function new(string name , avm_named_component parent = null);
 super.new(name , parent);
 byte_cov = new;
 endfunction

 function void write(input p2s_transaction t);
 data = t.data;
 byte_cov.sample;

Advanced Verification Methodology Cookbook, 2.0272

The SystemVerilog AVM Library
The TLM Library

July 24, 2006

 endfunction
endclass

monitor m_monitor;
my_transaction_dump m_dump;
my_coverage m_coverage;
…
m_monitor.ap.register(m_dump.analysis_export);
m_monitor.ap.register(m_coverage.analysis_export);

The example above registers a coverage class and a transaction “dumper” with a single analysis
port.

The TLM Library
The foundation of the AVM is the transaction level channels and interfaces used to
communicate between verification components. We’ve modeled the SystemVerilog
implementation of the TLM interfaces and channels on the OSCI TLM-1.0 standard. We chose
the The OSCI TLM standard because it contains well thought out semantics for transaction level
interfaces and channels.

The TLM Interfaces

Unidirectional Interfaces
The core TLM interfaces are put, get, and peek. For each of these there are blocking and
nonblocking and combined interfaces. There are also interfaces that combined get and peek -
again in blocking, nonblocking, and combined forms.

The unidirectional interfaces assume that the target can negotiate about implementing the
transaction. The blocking interfaces do not allow the target to negotiate about whether the
transaction will complete, but they do allow the target to wait until it is ready. As a result, the
blocking interfaces are implemented using tasks. The nonblocking methods allow no
negotiation about duration: they are instantaneous and for this reason are implemented as
functions. However, they do allow the target to negotiate about whether to accept the
transaction asked for by the initiator. Then, they return bits indicating whether the transactions
succeeded or not.

The put interfaces are shown below. The get, peek, and get_peek interfaces follow the same
pattern.

virtual class tlm_blocking_put_if #(type T = int);
 pure virtual task put(input T t);
endclass

virtual class tlm_nonblocking_put_if #(type T = int);
 pure virtual function bit try_put(input T t);
 pure virtual function bit can_put();

The SystemVerilog AVM Library
The TLM Library

Advanced Verification Methodology Cookbook, 2.0 273
July 24, 2006

endclass

virtual class tlm_put_if #(type T = int);
 pure virtual task put(input T t);
 pure virtual function bit try_put(input T t);
 pure virtual function bit can_put();
endclass

As can be seen from the code above, all the TLM interfaces are implemented with abstract
classes using only pure virtual methods. While we do provide some channels that implement
these interfaces, it is the interfaces that are fundamental to TLM, not the channels.

Bidirectional Interfaces
All the TLM bidirectional interfaces have two parameters: one for the request type, the other for
the response type. The master interfaces combine puts on the request with gets and peeks on the
response, while the slave interface combine puts on the response with gets and peeks on the
request.

The blocking master and slave interfaces are shown below. There are also nonblocking and
combined variants.

virtual class tlm_blocking_master_if #(type REQ = int , type RSP = int);
 pure virtual task put(input REQ req);
 pure virtual task get(output RSP rsp);
 pure virtual task peek(output RSP rsp);
endclass

virtual class tlm_blocking_slave_if #(type REQ = int , type RSP = int);
 pure virtual task put(input RSP rsp);
 pure virtual task get(output REQ req);
 pure virtual task peek(output REQ req);
endclass

In the case where requests and responses are tightly bound in a non pipelined, one to one
relationship, it is possible to combine the calls to put and get into a single transport call:

virtual class tlm_transport_if #(type REQ = int , type RSP = int);
 pure task transport(input REQ request , output RSP response);
endclass

TLM Channels

tlm_fifo
A tlm_fifo is a parameterized class which implements and exports all the tlm interfaces
described in section .

Advanced Verification Methodology Cookbook, 2.0274

The SystemVerilog AVM Library
The TLM Library

July 24, 2006

In addition to providing the basic fifo functionality, it also has two analysis ports: put_ap and
get_ap. A transaction is written to put_ap whenever a put successfully completes, and to get_ap
whenever a get or peek successfully completes.

Tlm_fifos can be of any size or unbounded. The size is specified in the constructor, and if it is
zero the fifo is considered to be unbounded.

class tlm_fifo #(type T = int , type CLONE = avm_built_in_clone #(T))
 extends avm_named_component;

 tlm_put_imp #(this_type , T) put_export;
 tlm_blocking_put_imp #(this_type , T) blocking_put_export;
 tlm_nonblocking_put_imp #(this_type , T) nonblocking_put_export;

 tlm_get_imp #(this_type , T) get_export;
 tlm_blocking_get_imp #(this_type , T) blocking_get_export;
s tlm_nonblocking_get_imp #(this_type , T) nonblocking_get_export;

 tlm_peek_imp #(this_type , T) peek_export;
 tlm_blocking_peek_imp #(this_type , T) blocking_peek_export;
 tlm_nonblocking_peek_imp #(this_type , T) nonblocking_peek_export;

 tlm_get_peek_imp #(this_type , T) get_peek_export;
 tlm_blocking_get_peek_imp #(this_type , T) blocking_get_peek_export;
 tlm_nonblocking_get_peek_imp #(this_type , T)
nonblocking_get_peek_export;

 analysis_port #(T) put_ap , get_ap;

 function new(string name = "" ,
 avm_named_component parent = null ,
 int size = 1);
...

analysis_fifo
Analysis_fifo is an extension of an unbounded tlm_fifo. As well as implementing and exporting
all the tlm interfaces, it implements the analysis interface. This means that it is very often used
to subscribe to an analysis port — either directly with the analysis fifo at the top level of the
hierarchy, or indirectly, with the analysis export of an analysis fifo being exported from a lower
level in the hierarchy.

class analysis_fifo #(type T = int) extends tlm_fifo #(T);

 analysis_imp #(analysis_fifo #(T) , T) analysis_export;

 function new(string name , avm_named_component parent = null);
 super.new(name , parent , 0);

 analysis_export = new(this);
 endfunction

The SystemVerilog AVM Library
Additional AVM Components

Advanced Verification Methodology Cookbook, 2.0 275
July 24, 2006

 function void write(input T t);
 this.try_put(t);
 endfunction
endclass

tlm_req_rsp_channel
A tlm_req_rsp_channel is a parameterized class that consists of a request and a response fifo.
All the exported interfaces of the underlying fifos are exported by the tlm_req_rsp_channel,
although only the two put_aps are imported. The sizes of these two fifos can be arbitrarily
specified in the constructor.

In addition to the original put, get and peek interfaces of the two underlying fifos, this channel
also exports the bidirectional master and slave interfaces.

tlm_transport_channel
Tlm_transport_channel is a tlm_req_rsp_channel where both fifos are of size 1. In addition to
all the exported interfaces of tlm_req_rsp_channel, it also exports the transport interface, which
assumes a tight, one to one, non pipelined coupling between requests and responses.

class tlm_transport_channel #(type REQ = int , type RSP = int)
 extends tlm_req_rsp_channel #(REQ , RSP);

 tlm_transport_imp #(this_type , REQ , RSP) transport_export;

 function new(string name = "" , avm_named_component parent = null);
 super.new(name , parent , 1 , 1);
 transport_export = new(this);
 endfunction

 task transport(input REQ request , output RSP response);
 this.m_request_fifo.put(request);
 this.m_response_fifo.get(response);
 endtask
endclass

This channel can be useful when converting directed bidirectional stimulus into separate
requests and responses that a bidirectional bus understands.

Additional AVM Components

avm_algorithmic_comparator
Avm_algorithmic_comparator compares two streams of data of different types. To do this
requires a third parameter in addition to the two which specify the two transaction types. The
third parameter specifies a transformer that converts one stream of data to another. The
transformer class transforms “BEFORE” objects into “AFTER” objects, which then are fed into

_Ref132530014

Advanced Verification Methodology Cookbook, 2.0276

The SystemVerilog AVM Library
Additional AVM Components

July 24, 2006

a normal, in-order comparator. If necessary, the transform method in the TRANSFOMER can
call a C function imported across the DPI.

class avm_algorithmic_comparator #(type BEFORE = int ,
 type AFTER = int ,
 type TRANSFORMER = int_transform)

 extends avm_named_component;

 analysis_if #(AFTER) after_export;
 analysis_imp #(this_type , BEFORE) before_export;

 local avm_in_order_class_comparator #(AFTER) comp;
 local TRANSFORMER m_transformer;

 function new(TRANSFORMER transformer ,

string name ,
avm_named_component parent = null);

 super.new(name , parent);

 m_transformer = transformer;
 comp = new("comp" , this);
 before_export = new(this);
 endfunction

 function void export_connections;
 after_export = comp.after_export;
 endfunction

 function void write(input BEFORE b);
 comp.before_export.write(m_transformer.transform(b));
 endfunction
endclass

The TRANSFORMER must have a function called transform of signature AFTER transform(
input BEFORE b);. We create an instance of the transformer (rather than making it a genuine
policy class with a static transform method) because we may need to do reset and configuration
on the transformer itself.

To use the algorithmic comparator, we must:

• create a transformer instance

• pass the transformer instance in to the constructor of the comparator

• register before_export with an analysis_port #(BEFORE)

• register after_export with an analysis_port #(AFTER)

When the first analysis port emits a transaction of type BEFORE it is transformed by the
transformer into a type AFTER and put in to one of the fifos in the in order comparator. An
transaction of type AFTER goes immediately in the other fifo. Whenever there is a pair of
transactions in the two fifos, they are got from the fifo and compared using AFTER.comp.

The SystemVerilog AVM Library
Use Model Issues

Advanced Verification Methodology Cookbook, 2.0 277
July 24, 2006

avm_global_analysis_ports
A global analysis port is a many to many broadcaster. A global analysis port of a given name
and type is global within in any simulation (there is only one of them, and it exists in the global
namespace).

This can be used to get information out of testbench components buried deep in the hierarchy of
the test bench without the need to connect analysis ports up through the hierarchy.

However, precisely because they are global, some caution should be exercised. For any global
analysis port, the number of “writers” may be zero, one or many, and we do not have any
control over who is listening.

There is only one method in global_analysis_ports #(type T = int). This is the static
method

static function analysis_port #(T) get_analysis_port(string name);

This gets the analysis port of this name and type T, if it already exists. If it does not already
exist, it creates it. This method should always be used to access global analysis ports.

For example :

typedef global_analysis_ports #(transaction) gap_t;

analysis_port #(transaction) global_ap;

global_ap = gap_t::get_analysis_port("fred");

Use Model Issues
This section discussions various issues that users of the AVM library which users of the library
should be aware of.

Uses of Fine Grained Process Control
Fine grained process control capabilities exist in SystemVerilog. You can use these capabilities
to find out the process id of the current process and store it somewhere. Having stored it,
another process can suspend, resume or kill that process.

This capability can be used to control both stimulus and transactors, although the precise details
vary from one kind of object to another.

Advanced Verification Methodology Cookbook, 2.0278

The SystemVerilog AVM Library
Use Model Issues

July 24, 2006

Stimulus Control
Often you want to execute many different stimulus generators in a single test. There are usually
constraints on the ordering of these tests. You may wish to run some tests in sequence and
others in parallel. You may want to kill some tests when they have achieved their coverage
goals, while leaving other tests to continue until they have finished executing.

You can use fine grained process control to achieve all this.

For example:

process p_array[2:0];

fork
 begin p_array[0] = process::self; stimulus0.generate_stimulus(); end
 begin p_array[1] = process::self; stimulus1.generate_stimulus(); end
 begin p_array[2] = process::self; stimulus2.generate_stimulus(); end
 do_stimulus_control_a(p_array);
join

stimulus3.generate_stimulus();

fork
 begin p_array[0] = process::self; stimulus4.generate_stimulus(); end
 begin p_array[1] = process::self; stimulus5.generate_stimulus(); end
 begin p_array[2] = process::self; stimulus6.generate_stimulus(); end
 do_stimulus_control_b(p_array);
join

The code above:

• Executes stimulus0, stimulus1, and stimulus2 in parallel until they either terminate
themselves or are terminated by do_stimulus_control_a.

• When all three have finished, it executes stimulus3 until it ends.

• Executes stimulus4, stimulus5, and stimulus6 in parallel until they either terminate
themselves or are terminated by do_stimulus_control_b.

Thread Control in Transactors
Thread control in transactors is a little different, because transactors are
avm_verification_components whose run tasks start at the beginning of simulation. As
described in section avm_verification_component, there are default functions to suspend,
resume, and kill this run task. However, we need to a little more work when the run task itself
has forked off its own tasks.

For example :

class pipelined_monitor extends avm_verification_component;
 analysis_port #(request_t) request_ap;
 analysis_port #(response_t) response_ap ;

The SystemVerilog AVM Library
Use Model Issues

Advanced Verification Methodology Cookbook, 2.0 279
July 24, 2006

 analysis_port #(transaction_t) transaction_ap ;

 // constructor omitted

 process m_request_process , m_response_process ;

 task run ;
 fork
 handle_request ;
 handle_response;
 join
 endtask

 task handle_request ;
 request_t req ;

 m_request_process = process ::self;
 forever begin
 ...
 req = new;
 request_ap.write(req);
 end
 endtask

 task handle_response ;
 response_t rsp ;
 transaction_t transaction;

 m_response_process = process ::self;
 forever begin
 ...
 rsp = new;
 transaction = new(req , rsp);

 request_ap.write(rsp);
 transaction_ap.write(transaction);
 end

 endtask

 virtual function void suspend;
 super.suspend;
 m_response_process.suspend;
 m_request_process.suspend;
 endfunction

 virtual task resume;
 super.resume;
 m_response_process.resume;
 m_request_process.resume;
 endtask

 virtual function void kill;
 super.kill;
 m_response_process.kill;
 m_request_process.kill;
 endfunction

Advanced Verification Methodology Cookbook, 2.0280

The SystemVerilog AVM Library
Use Model Issues

July 24, 2006

endclass

The pipeline example above forks two processes: handle_response and handle_request.
These extra processes must be suspended, resumed, and killed at the same time as the run task.

Transactions, Convenience Methods, and Directed
Testing

There are many advantages in using transactions when doing things like constrained random
stimulus generation, functional coverage, and transactor design. Representing transactions as a
class moving from one component to another (rather than as a number of method calls with
different arguments) makes the mechanics of all these techniques a lot easier.

However, the natural way of hand writing directed stimulus is to use a sequence of method calls
that look as much like software as possible. To bridge this gap we use a set of methods called a
convenience layer. This consists of one or more methods that look like software calls but which
create transactions and send them out over a tlm port, and possibly also receive transactions and
send them back to the user layer.

As far as the external connectivity of the directed stimulus generator goes, there is no difference
between a directed and a constrained random stimulus generator such as avm_stimulus (see
section avm_stimulus). As far as the writer of the stimulus goes, all they see is the convenience
layer and are completely unaware of the existence of the tlm ports necessary to link this
stimulus generator to the rest of the verification environment.

class mem_bidirectional_stimulus extends avm_named_component;

 tlm_transport_if #(request_t , response_t) initiator_port;

 function new(string name , avm_named_component parent = null);
 super.new(name , parent);
 endfunction

 task generate_stimulus(int write_count = 16 , int read_count = 16);

 address_t address;
 data_t data;

 for(address = 0; address < write_count; address++) begin
 write(address , address + 17);
 end

 for(address = 0; address < read_count; address++) begin
 read(address , data);
 end

 endtask

 task write(input address_t address , input data_t data);

The SystemVerilog AVM Library
Coding Techniques

Advanced Verification Methodology Cookbook, 2.0 281
July 24, 2006

 request_t request = new(address , MEM_WRITE , data);
 response_t response;

 initiator_port.transport(request , response);
 endtask

 task read(input address_t address , output data_t data);
 request_t request = new(address , MEM_READ);
 response_t response;

 initiator_port.transport(request , response);
 data = response.m_rd_data;
 endtask
endclass

The example above has two loops in the run task, which look like the equivalent software. It is
the convenience layer (which could have been put into a base class) which translates to and
from requests and responses moving across a tlm_transport_if port. Further, if we wish to
suspend, resume, or kill this stimulus generator before it terminates naturally we can use the
techniques described in section Stimulus Control.

Reproducible Random Stimulus
The constructor of the avm_stimulus class writes out the results of get_randstate(). This
non-human-readable string contains all the information needed to reproduce the precise state of
the stimulus generator before it starts generating stimulus. This means that we can then use the
set_randstate method to regenerate this same sequence of constrained random stimuli,
whether or not we have set a different global seed, and whether or not we have moved this
stimulus generator to a different place in the testbench (or a different testbench altogether).

For example :

avm_stimulus #(transaction) m_stimulus;
...
m_stimulus = new(“stimulus”);
…
read_randstate_from_file(previous_randstate);
m_stimulus.set_randstate(previous_randstate);
…
m_stimulus.generate_stimulus(…);

Coding Techniques
There are two coding techniques used in the implementation of the AVM which need to be
explained. The first of these is the use of wrappers to mimic multiple inheritance, and the
second is the use of policy classes in standard components such as avm_in_order_comparator
and tlm_fifo.1

Advanced Verification Methodology Cookbook, 2.0282

The SystemVerilog AVM Library
Coding Techniques

July 24, 2006

Wrappers and Multiple Inheritance
Abstract interfaces, such as the TLM interfaces (see section The TLM Interfaces) or the analysis
interface described in section (see analysis_if and analysis_port), provide a clean separation
between the initiator of a transaction level transfer and the target. The interface specifies the
contract between initiator and target (client and server in OO terminology), but leaves it up to
the target to decide how to implement this interface. The idea of separating initiator and target
through an interface is central to TLM and the AVM.

Most channels implement more than one interface. For example, tlm_fifo implements put, get,
peek, and get_peek in blocking, non blocking and combined forms, adding up to a total of 12
interfaces. In languages such as C++ and Java, we can use multiple inheritance to implement
this pattern : as well as inheriting from an infrastructure component like
avm_named_component, it would also inherit the 12 abstract interfaces.

Most channels implement more than one interface. For example, tlm_fifo implements put, get,
peek, and get_peek in blocking, non blocking, and combined forms. This adds up to a total of 12
interfaces. In languages such as C++ and Java, we can use multiple inheritance to implement
this pattern: as well as inheriting from an infrastructure component like
avm_named_component, it would also inherit the 12 abstract interfaces.

Figure A-2. Multiple Inheritance

However, SystemVerilog does not have such facilities built in to the language, so we need to
use an alternative pattern. The following pattern is the wrapper pattern used:

1. These can be seen as workarounds for the lack of C++ or Java style multiple inheritance and the lack of
operator overloading

tlm_fifo

tm_put_if tlm_get_if tlm_peek_ifInterfaces

Channels

The SystemVerilog AVM Library
Coding Techniques

Advanced Verification Methodology Cookbook, 2.0 283
July 24, 2006

Figure A-3. Multiple Inheritance in SystemVerilog using Wrappers

In the wrapper pattern shown above, the channel has a number of implementations, or wrappers.
These wrappers inherit from their interface and delegate the call to each of the methods in this
interface make to the channel.

An outline of the blocking put wrapper and parts of the tlm_fifo code is shown below:

class tlm_blocking_put_imp #(IMP = tlm_fifo, T = int)
 extends tlm_blocking_put_if #(T);

 local IMP m_imp;
 function new(IMP I);
 m_imp = i;
 endfunction

 task put(input T t);
 m_imp.put(t);
 endtask
endclass

class tlm_fifo #(T = int)

We can now write producers and consumers that only need to know that they have blocking put
and blocking get ports – the fact that the implementation of the blocking put and get functions is
in a tlm_fifo is irrelevant to the producer and consumer. The SystemVerilog implementation of
basic TLM pattern that uses a fifo on page 91 is an example of such producer and consumer.

Port / Export Coding Conventions
It should be noted in the code above that both the producer and consumer have ports while the
tlm_fifo has exports. Both ports and exports are simply handles to interfaces, but the handles
are being used in different ways.

tlm_fifo

tm_put_imp tlm_get_imp tlm_peek_imp

tm_put_if tlm_get_if tlm_peek_ifInterfaces

Channels

Implementations
(Wrappers)

Advanced Verification Methodology Cookbook, 2.0284

The SystemVerilog AVM Library
Coding Techniques

July 24, 2006

In the case of an export, the implementation of the interface is contained within this component
and provided to the outside world using the export. After the constructor has been called, these
handles have non null values.

In the case of a port, the implementation of the interface is external to this component. This
component requires a non null value to be supplied to this handle sometime after construction.

If the components in question exist at the top level of the environment class, then the export
which provides the interfaces should be assigned to the port that requires the interface in the
connect function, as in the code above. For more details on the connectivity of hierarchical
components, see section in the AVM Library Documentation.

Policy Classes
In the section avm_transaction, we introduced the requirements for a class to be a valid AVM
transaction. As well as implementing the pure virtual convert2class method, it also must
provide T clone() and comp(input T t) methods. This is because these methods are then
assumed to exist in parameterized verification components such as
avm_in_order_comparator.

However, in SystemVerilog, there are two separate type systems. There are classes that can be
given user defined methods, and there are built in static types such as int, bit, enums, and structs
which are manipulated mainly or exclusively by built-in and non overloadable operators such as
“==”.

We would like our standard components such as tlm_fifo or avm_in_order_comparator to
work with both class based transactions and built in types. To do this, we introduce the concept
of a policy class. A policy class is a class which simply tells us how to perform some operation.
The policies defined and used in the avm are comp, convert and clone. These three policies have
been defined for classes and for built-in types.

Here is the policy class for comparing two objects with built-in types.

34 class avm_built_in_comp #(type T = int);
35
36 static function bit comp(input T a , input T b);
37 return a == b;
38 endfunction
39
40 endclass

Here is the policy class for comparing two class objects.

78 class avm_class_comp #(type T = int);
79
80 static function bit comp(input T a , input T b);
81 return a.comp(b);
82 endfunction
83

The SystemVerilog AVM Library
Coding Techniques

Advanced Verification Methodology Cookbook, 2.0 285
July 24, 2006

84 endclass

The built-in policy relies on the existence of the == operator for built-in types, and the class
operator relies on the existence of the comp() method in the class T.

An example of how the policy classes are used is in the in_order_comparator component. It’s
designed to work with either built-in types or class types.

class avm_in_order_comparator #(type T = int ,
 type comp = avm_built_in_comp #(T) ,
 type convert = avm_built_in_converter #(T))

Internally, we do the comparisons and message construction using the policy classes:

 forever begin

 before_port.get(b);
 after_port.get(a);

 if(!comp::comp(b , a)) begin

 $sformat(s , “%s differs from %s” ,
 converter::convert2string(b) ,
 converter::convert2string(b));
 m_report_object.avm_report_warning("Comparator Mismatch" , s);

 m_mismatches++;
 end
 else begin
 m_report_object.avm_report_message("Comparator Match" ,

converter::convert2sting(b));
 m_matches++;
 end
 end
 endtask

Now, we can simply specify different policies for the convenience classes:

class avm_in_order_built_in_comparator #(type T = int)
 extends avm_in_order_comparator #(T);
 …
endclass

class avm_in_order_class_comparator #(type T = int)
 extends avm_in_order_comparator #(T , avm_class_comp #(T) ,
avm_class_converter #(T));
 …
endclass

while the code that implements the comparison and printing remains the same.

Advanced Verification Methodology Cookbook, 2.0286

The SystemVerilog AVM Library
Coding Techniques

July 24, 2006

Bibliography

Advanced Verification Methodology Cookbook, 2.0 287
July 24, 2006

Appendix B
Bibliography

Standards
1. IEEE standard 1800-2005, “IEEE Standard for SystemVerilog Unified Hardware

Design, Specification, and Verification Language”, November 2005.

2. IEEE, standard 1666-2005, “IEEE Standard SystemC Language Reference Manual”,
March 2006.

3. OSCI TLM-1.0 Transaction Level Modeling Standard. SystemC kit with whitepaper
available on http://www.systemc.org.

Functional Verification
1. Janick Bergeron, “Writing Testbenches: Functional Verification of HDL Models”,

Second edition, Kluwer Academic Publishers, 2003.

2. Andreas S. Meyer, “Principles of Functional Verification”, Elsevier Science, 2004.

3. Harry D. Foster, Adam C. Krolnik, David J. Lacey, “Assertion-Based Design”, 2nd
Edition, Kluwer Academic Publishers, 2004.

SystemC
1. Thorsten Grotker, Stan Liao, Grant Martin, Stuart Swan, “System Design with

SystemC”, Kluwer Academic Publishers, 2002.

2. David C. Black and Jack Donovan, “SystemC: From the Ground Up”, Kluwer
Academic Publishers, 2004.

3. J. Bhasker, A SystemC Primer, Star Galaxy Publishing, 2002.

4. Frank Ghenassia (ed.), “Transaction-Level Modeling with SystemC: TLM Concepts and
Applications for Embedded Systems”, Springer, 2005.

C++ and Object Oriented Programming
1. Bjarne Stroustrup, “The C++ Programming Language”, Third Edition, Addison-Wesley,

1997.

2. Gregory Satir, Doug Brown, “C++: The Core Language”, O’Reilly & Associates, Inc.,
1995.

3. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented Software”, Addison-Wesley, 1995.

Advanced Verification Methodology Cookbook, 2.0288

Bibliography

July 24, 2006

4. Andrei Alexandrescu, “Modern C++ Design: Generic Programming and Design Patterns
Applied”, Addison-Wesley, 2001.

Programming Style
1. Steve McConnell, “Code Complete”, Second Edition, Microsoft Press, 2004.

2. Herb Sutter, Andrei Alexandrescu, “C++ Coding Standards: 101 Rules, Guidelines, and
Best Practices”, Addison-Wesley, 2005.

	Acknowledgements
	Chapter 1 Cookbook Orientation
	Preface
	Introduction
	Using the Cookbook
	Cookbook Organization
	Forms
	Building and Running the Examples
	Example Code
	Obtaining the Cookbook Kit
	Questions and Comments

	Cookbook Notation
	Components
	Interfaces
	Interconnect
	Channels
	Summary

	Naming Conventions

	Chapter 2 Verification Principles
	Two Questions
	Testbenches
	A First Testbench
	A Second Testbench

	Chapter 3 Overview of the AVM
	Verification Components
	Concentric Testbench Architecture
	Transactors
	Monitor
	Driver
	Responder

	Environment Components
	Stimulus Generator
	Master
	Slave

	Analysis Components
	Scoreboard
	Coverage Collector

	Controller

	Two Domains
	Object Oriented Programming Style
	Objects as Components
	Inheritance
	Interfaces

	Summary

	Chapter 4 Introduction to TLM
	Definition of a Transaction
	Representing Transactions
	Function Calls
	Transaction Objects
	Transaction Recording

	Transaction Level Modeling and Verification
	Abstraction
	Reference Models

	Put
	Description
	Key Concepts
	SystemVerilog Implementation
	SystemC Implementation

	Get
	Description
	Key Concepts
	SystemVerilog Implementation
	SystemC Implementation

	Request/Response
	Description
	Key Concepts
	SystemVerilog Implementation
	SystemC Implementation

	FIFO
	Description
	Key Concepts
	SystemVerilog Implementation
	SystemC Implementation

	Bi-directional Communication
	Description
	Key Concepts
	SystemVerilog Implementation
	SystemC Implementation

	Transaction Level Bus
	Description
	Key Concepts
	SystemC Implementation
	Masters and Slaves
	The Bus

	Chapter 5 AVM Mechanics in SystemVerilog
	Interfaces
	SystemVerilog Interface
	SystemVerilog Virtual Interface
	Pure Virtual Interface Class

	Ports and Exports
	Ports
	Exports

	The Environment Class
	The Connect Phase
	Non-Hierarchical Binding
	Ports, Exports and Hierarchy
	Connecting Analysis Ports
	Analysis Ports and Hierarchy

	Virtual Interfaces and the avm_env

	Summary

	Chapter 6 Testbench Fundamentals
	Testbench for a Memory
	Description
	Key Concepts
	Monitor Construction
	SystemVerilog Implementation Details
	SystemC Implementation Details

	Testbench for Memory with Separate Driver
	Description
	Key Concepts
	Transaction Level Stimulus Generator
	Driver Construction
	SystemVerilog Implementation Details
	Stimulus Generator Implementation

	SystemC Implementation Details
	Stimulus Generator Implementation

	Memory TB with Independent Driver and Stimulus Generator
	Description
	Key Concepts
	Driver Design
	SystemVerilog Implementation Details
	Driver Implementation

	SystemC Implementation Details
	Driver Implementation

	Bi-directional Communication in Testbench
	Description
	Key Concepts
	SystemVerilog Implementation Details
	Constructing a Master
	The Internal Operation of tlm_transport_channel
	Constructing a Bi-directional Driver

	SystemC Implementation Details
	Constructing a Master
	The Internal Operation of tlm_transport_channel
	Constructing a Bi-directional Driver

	Chapter 7 Complete Testbenches
	Scoreboard
	Description
	Key Concepts
	Analysis ports
	Scoreboards
	SystemVerilog Class-Based Implementation Details
	Analysis Port
	In-Order Comparator

	SystemVerilog Module-Based Implementation Details
	SystemC Implementation Details
	Analysis Ports
	In-Order Comparator
	Controller and Stimulus Generator

	Coverage
	Description
	Key Concepts
	Coverage and Coverage Collectors
	SystemVerilog Implementation Details
	SystemVerilog Module-Based Implementation Details
	SystemC Implementation Details

	Generating Errors
	Description
	Key Concepts
	Constructing an Error Driver
	SystemVerilog Class-Based Implementation Details
	SystemVerilog Module-Based Implementation Details
	SystemC Implementation Details

	Chapter 8 Stepwise Refinement
	Transaction Level FPU
	Description
	Key Concepts
	SystemVerilog Implementation Details
	Master
	TLM

	SystemC Implementation Details
	Master

	FPU RTL
	Description
	Key Concepts
	SystemVerilog Implementation Details
	Driver
	Monitor

	SystemC Implementation Details
	Driver
	Monitor

	FPU Golden Model
	Description
	Key Concepts
	SystemVerilog Implementation Details
	SystemC Implementation Details

	Chapter 9 Constrained Random Verification
	Overview of CRV Methodology
	Directed Testing
	Constrained Random Verification
	Directing Tests from Constrained Random
	Basics of the Technology
	Random Number Generation
	Constraint Solving

	Randomization with Object Oriented Programming
	Object Oriented Programming Basics
	Adding Randomization to Objects
	Layering Constraints Using Inheritance

	Managing Constraints
	Dynamically Modifying Constraints
	Over Constraining
	Implication
	Distributions and Solving Order

	Useful Operations in Constraints
	Set Membership
	Dynamically Sized Arrays
	Organization of Constraints
	Per Design/Per Test Configuration
	Design Constraints
	Error Injection

	Advanced Topics
	Class Factories
	Example of State Dependent Constraints

	Chapter 10 Assertion-Based Monitors
	Assertion-Based Monitor
	Description
	Key Concepts
	Protocol Assertion-Based Monitor Example
	Nonpipelined Bus Requirements

	SystemVerilog Implementation Details

	Testbench with Assertion-Based Checker
	Description
	Key Concepts
	SystemVerilog Implementation Details

	Appendix A The SystemVerilog AVM Library
	Introduction
	Reporting
	Basic Reporting Methods
	Verbosity Level
	Actions
	Setting Actions

	File Output
	The Report Formatter
	Using the Formatter
	Advanced Topics

	Building Blocks
	avm_named_component
	Constructor
	Report Method
	Report Handling
	Hierarchical Connectivity

	avm_verification_component
	avm_env

	Core AVM Classes and Components
	avm_transaction
	avm_stimulus
	analysis_if and analysis_port
	avm_in_order_comparator
	avm_subscriber

	The TLM Library
	The TLM Interfaces
	Unidirectional Interfaces
	Bidirectional Interfaces

	TLM Channels
	tlm_fifo
	analysis_fifo
	tlm_req_rsp_channel
	tlm_transport_channel

	Additional AVM Components
	avm_algorithmic_comparator
	avm_global_analysis_ports

	Use Model Issues
	Uses of Fine Grained Process Control
	Stimulus Control
	Thread Control in Transactors

	Transactions, Convenience Methods, and Directed Testing
	Reproducible Random Stimulus

	Coding Techniques
	Wrappers and Multiple Inheritance
	Port / Export Coding Conventions

	Policy Classes

	Appendix B Bibliography
	Standards
	Functional Verification
	SystemC
	C++ and Object Oriented Programming
	Programming Style

