
IP/SOC 2005 – December 7-8, 2005 1

Abstract:

SystemC 2.1 supports all hardware concepts
introduced by HDLs such as Verilog and VHDL.
V2SC proposes a methodology for automatic
conversion of Verilog 2001 constructs into
SystemC 2.1 language. This enables SystemC
community to import pre-designed (or machine-
generated) Verilog IP cores into SystemC
development environment. The reuse methodology
based on V2SC can dramatically reduce the system
development time. As an additional advantage, free
SystemC reference simulators can be employed.
V2SC offers a large Verilog subset coverage
including Verilog test-benches. Innovative
solutions have been proposed in this methodology
to adopt SystemC 2.1 as a target for conversion of
pre-designed Verilog IPs.

1. Introduction

Regarding SystemC as the future choice for design
language, existing Verilog IPs need to be translated
into SystemC. The methodology discussed in this
paper tries to fill in the gap between Verilog and
SystemC environments. This way SystemC users
are enabled to integrate Verilog cores into their
designs and Verilog users are enabled to port their
designs into SystemC as another option for IP core
customers as well. In summary this conversion
methodology makes a very useful and practical
extension to any Verilog design environment along
with an essential import capability to facilitate IP
reuse in any SystemC design environment where
simulation is fast and free. Some efforts have been
done previous to this work in porting HDLs to
C/C++ platform [1-3]. VTOC from Tension [3] is a
commercial tool that converts Verilog to
C++/SystemC. VTOC converts Verilog RTL to
C++/SystemC by interleaving the processes in
order to achieve fast simulation speed. V2SC
approach is to keep design hierarchy untouched

during translation and to support Verilog subset as
far as possible, including test-benches. In other
words V2SC introduces a transmission from
Verilog design environment to SystemC design
environment. V2SC is based on our previous work
[4] that was our primary efforts in this era.

2. Basic Building Blocks

Verilog most important building blocks are module,
always and initial blocks, continuous assignment
and gate or module instantiation.
Module is the container that includes other
concurrent building blocks. Each module is mapped
to its counterpart, SC_MODULE in SystemC.
SC_MODULE is a macro that implements a
corresponding SystemC library container class
where processes or object can be implemented.
Initial and always blocks and continuous
assignments are mapped into SystemC processes.
Two kinds of SystemC processes mostly match to
these concurrent processes: SC_METHOD and
SC_THREAD. SC_THREAD with its own
individual thread and stack and local variables is
slower than SC_METHOD but supports wait
statement which is required for delay and dynamic
event implementation. This makes use of
SC_THREAD inevitable for processes including
these language constructs. But as long as there is no
delay or dynamic event, SC_METHOD is the best
choice that makes a dramatic enhancement in
simulation time.
All the gates that are instantiated in Verilog are
mapped into corresponding processes including
equivalent signal assignments that assign a logical
combination of inputs to output.
Finally, when a module is instantiated in Verilog, in
SystemC an object of the corresponding
SC_MODULE class must be created and then port-
mapped accordingly.

 IP/SOC 2005

Session: High Level Modeling

Reusing Verilog IP Cores in SystemC Environment by V2SC

IP/SOC 2005 – December 7-8, 2005 2

3. Signals, Ports and Variables

3.1. Two-Value versus Four-Value Data Types

In Verilog all types of signals, variables and ports
are inherently four-value logic containing
resolution function. In SystemC sc_logic and sc_lv
types are perfect matches, but most of the time
two-value logic sufficiently holds because most
parts of circuits are designed with two-value logic.
Considering that two-value logic makes simulation
faster and more efficient, this methodology uses
two-value logic as long as the functionality is not
violated. Our methodology contains a two-four
value logic recognition algorithm that decides
which signals or variables must be declared as
four-value and which as two-value ones.
This algorithm recognizes left values assigned by a
“Z” either directly or indirectly as four-value logic.
Also inout ports are considered as four-value logic
signals in this algorithm.
There is a pair of two-value logic data types in
SystemC (bool, sc_uint or sc_int). bool is used for
single-bit data types where sc_int and sc_uint are
used for signed and unsigned vector data types
respectively. Four-value logic signals and variables
use sc_logic and sc_lv.
Table 1 shows coppesponding Verilog and
SystemC data types.

Table 1. Scalar and vector types.
SystemC Verilog Two-Value Four-Value

Single bit Bool sc_logic
Unsigned vector sc_uint,

sc_biguint
sc_lv

Signed vector sc_int,
sc_bigint

sc_lv

3.2. Verilog Registers in SystemC

Verilog signals(wire) and ports(input, output,
inout) have straight forward SystemC equivalent.
But an object declared in Verilog with reg
keyword may be used in the body as a variable or a
signal. In order to determine this, the whole
Verilog body must be passed once to observe how
this object has been treated, i.e., as a variable or as
a signal.

V2SC does this task through a built in algorithm.
This algorithm sets Verilog reg declaration type as
signal in following cases:

1. Reg variable is used as an event control of
an always or an initial block.

2. Reg variable is used as a left-value of a non-
blocking assignment.

3. Reg variable is used in right hand side
expression of a continuous assignment.

4. Reg variable is used for port binding of a
gate/module instantiation.

Table 2 shows Verilog and SystemC signals, ports
and variables.

3.3. Other Verilog types in SystemC

There are different types in Verilog such as real,
integer, time and so on. The way they are mapped
into SystemC is depicted in table 3. Note that type
integer in Verilog may be used as a signal or as a
variable as well and needs to be cleared out. The
way an integer is recognized to be a signal or a
variable is the same as the way described for
registers.

Table 3. Converted Verilog Types.
Verilog SystemC

event sc_event
real double

realtime double
time sc_time

integer int / sc_int<32>

4. Mapping Summary

Verilog is a very open language that makes world
easy for users and hard for tool developers.
Supporting some of Verilog constructs requires
extra knowledge about that specific object that
must be collected from other parts of circuit
description. V2SC covers a large subset of Verilog
constructs.
Wait statement that exists in SystemC 2.1, make
dynamic events and delay implementation possible.
Table 4. shows a brief report of covered Verilog
language aspects and their match in SystemC.

Table 2. Converted Verilog Variables, Signals and Ports.

SystemC Verilog Two-Value Four-Value
Variables (reg) Two-value types(Table 1) Four-value types(Table 1)

Signals (wire/reg) sc_signal sc_signal_resolved
sc_signal_rv

Ports (input,output,inout) sc_in,sc_out, sc_inout
sc_in_resolved/sc_in_rv

sc_out_resolved/sc_out_rv
sc_inout_resolved/sc_inout_rv

IP/SOC 2005 – December 7-8, 2005 3

Table 4. Mapping Summary.
 Verilog Language Construct SystemC Target Construct

Module Declaration SC_MODULE
Verilog Process including
1. Continuous assignment

2. Always
3. Initial

SC_METHOD / SC_THREAD

UDP SC_MODULE

Module instantiation An object of module class is instantiated

Gate instantiation SC_METHOD (macro based) /
SC_THREAD(macro based)

Task and Function C++ class function declaration

Parameter C++ template class

Building
Blocks

Localparam C++ static const declaration

Conditional statement C++ if-then-else
Case statement C++ switch statement

CaseX/CaseZ statement C++ while statements along with masks to
cover intended cases

For, while, repeat, forever loops C++ for-while loops

Control Flow

Disable statement C++ goto statement
Static event Appropriate signal in sensitivity list

Dynamic event SystemC wait construct
Wait statement SystemC wait construct

Delay and
Event

Delay SystemC wait construct

5. Main Features

Although Verilog is inherently C-like in its nature,
there isn’t an exact match for each Verilog
construct in SystemC and there is no straight
forward way from Verilog into SystemC. Several
conversion techniques have been employed in order
to keep functionality intact and make SystemC
output behave the same as Verilog input. Some of
the techniques are listed below.

5.1. Signal Handler

SystemC signals and ports lack bit-select and
range-select operators. When a single bit or a part
of a multi-bit signal/port needs to be written,
temporal variable is declared and used instead and
then actual signal/port is updated. This case
happens when such signals are used in port
mapping of a gate or module instantiation too. At
the time of port mapping, if expressional signals
(e.g., a&b) are used, the same procedure must be
done. The updating task is done in a separate
process called signal_handler. Signal_handler is a
simple and light-weighted built-in updater engine

sensitive to all involved signals. Figure 1 illustrates
this more clearly.

Verilog
module m1(input a, input b, output
out);
 sub1 X(out,a&b);
endmodule
SystemC
SC_MODULE(m1)
{
 sc_in<bool> a;
 sc_in<bool> b;
 sc_out<bool> out;

 sub1 X;

 sc_signal<bool> a_and_b;
 void v2sc_signal_handler() {
 a_and_b = a.read() & b.read();
 }

 SC_CTOR(m1) : X (“X”) {
 X (out, a_and_b);

 SC_METHOD(v2sc_signal_handler);
 sensitive << a << b;
 }
}

Figure1. Signal Handler Engine.

IP/SOC 2005 – December 7-8, 2005 4

5.2. Process Merging

Lack of bit/part select of SystemC signals leads to
declaring temporary variables for them. These
temporary variables do not follow the semantic of a
signal and in some cases cause problem in the
functionality of the generated SystemC code. For
example in the following code the two separated
continues assignment with same left hand side
should be merged in SystemC generated code to
achieve correct SystemC functionality.

Verilog
assign a[0] = exp1;
assign a[1] = exp2;
SystemC
void assign_process_complex()
{
 sc_uint<2> a_tmp(a.read());
 a_tmp[0] = exp1;
 a_tmp[1] = exp2;
 a = a_tmp;
}

Figure 2. Process Merging Example.

V2SC process merging algorithm recognizes these
cases and merges the processes for correct
functionality.

5.2. CaseX Handling

V2SC uses built-in masks in order to support
Verilog casex construct. V2SC is equipped with an
algorithm that generates a mask based on the value
of case expression. Case item is ANDed with this
mask and the value out of this operation is
compared with another mask that is generated by
replacing case expression ‘x’ values by ‘0’.

Verilog
casex(s)
 3'b00x: x = a;
 3'b1x1: x = b;
 default: x = c;
endcase
SystemC
do{
 int value = s.read();
 if(value & 6 == 0) {
 x = a.read(); break;}
 if(value & 5 == 5) {
 x = b.read(); break;}
 // default
 { x = c.read(); break;}
} while(0);

Figure 3. CaseX example.

5.3. Blocking and Non-blocking

V2SC decides whether a Verilog reg is used as a
signal or as a variable and the corresponding type is
declared and used. Therefore when there is no
dealy the semantic of blocking and non-blocking

assignments are handled automatically. But in
presence of a delay, the flow of program differs in
blocking and non-blocking assignments.
Using delayed blocking and non-blocking
assignment combined in an always block is not
common and not supported, but this combination
may be used in an initial block for implementing a
test-bench that is supported as described in 5.4.

5.4. Test-Benches

Generally a Verilog test-bench is an initial block
where there is a combination of delays and a series
of assignments to the inputs of the unit under test
along with a clock-generator always block that both
of them are neatly converted into SystemC. Inside
the initial block, a blocking assignment behaves as
a normal sequential assignment; it blocks program
flow for the amount of delay if there is any, does its
task and then transfers the program flow to the next
statement. But a non-blocking assignment, as its
name suggests, doesn’t block the program flow and
introduces concurrency into sequential blocks. If
there is no delay, the semantic of a blocking
assignment is similar to assigning to a variable and
the semantic of a non-blocking assignment is
equivalent to assigning a signal in SystemC. When
there is delayed non-blocking assignment, in order
to keep the concurrency it suggest, individual
separate processes are generated for each one.

Verilog
Initial
begin
 a <= 0;
 b <= 0;
 c <= 0;
 a <= #5 4;
 b <= #8 8;
 c <= #10 1;
end
SystemC
Void process_a()
{
 a = 0;
 wait(5,SC_NS);
 a = 4;
}

void process_b()
{
 b = 0;
 wait(8,SC_NS);
 b = 8;
}

void process_c()
{
 c = 0;
 wait(10,SC_NS);
 c = 1;
}
Figure 5. Non-Blocking assignment in test-benches.

IP/SOC 2005 – December 7-8, 2005 5

6. Not-Supported Constructs

Not-supported Verilog constructs resides in one of
the following categories:

1. Procedural continuous assignment
(assign/deassign/force/release)

2. Verilog switch level
3. Specify block
4. Fork/Join constructs in design (fork/join

used in test-benches are supported)
5. Four-Value logic operators
6. Verilog 2001 generate statement and

elaboration time constructs
7. Some system tasks and functions

Most of above items do not have an equivalent in
SystemC and some of them are rarely used in real
designs.

7. Experimental Results

In order to examine the V2SC coverage of Verilog
constructs, the examples of three well-known books
have been selected for test. The following table
shows the results.

Table 5. Coverage summary.
Book Coverage Percent
Verilog Digital System
Design
(by Z. Navabi) [5]

182/243 = 75%

Verilog Quickstart
(by J. Lee) [6] 100/131 = 76%

Verilog HDL: A Guide to
Digital Design and Synthesis
(by S. Palnitkar) [7]

74/88 = 84%

This table shows that V2SC supports about 80% of
Verilog constructs.
We selected Synopsys Designware Foundation [8]
for testing V2SC conversion skill in the state-of-
the-art Verilog IPs. V2SC converts about 90% of
this library successfully into SystemC. And finally
we tested PicoJava from Sun Microsystems for
verifying V2SC in a real fabricated design. V2SC
converted all PicoJava [9] codes to SystemC 100%
successfully, because whole of this chip is designed
at RTL level.

7. Conclusion

The converting methodology just discussed makes
re-use of pre-designed Verilog IP cores possible.
Along with that they can be simulated in a fast and
a free simulation environment that generates
executable outputs. In this paper, in pursue of
reusing previously designed modules, we have
introduced a conversion methodology from Verilog

2001 into SystemC 2.1. The main features of our
converter were explained. V2SC provides a
homogeneous platform and succeeds in alleviating
the load of efforts done in a design flow by
converting pre-designed Verilog circuits into
SystemC.

Reference:

[1] VHDL to SystemC Compiler, http://www.

prosilog.com
[2] VHDLtoSystemC, http://www.tni-

valiosys.com
[3] VTOC, http://www.tenison.com
[4] L. Mahmoudi Ayough, A. Haj Abutalebi, O. F.

Nadjarbashi and S. Hessabi, "Verilog2SC: A
Methodology for Converting Verilog HDL to
SystemC," Proc. of the 11th International
HDL Conference (HDL Con 2002), pp. 211-
217, San Jose, California, USA, March 2002.

[5] Z. Navabi, Verilog Digital System Design,
McGraw-Hill, 2003.

[6] J. Lee, Verilog Quickstart, Kluwer Academic
Publishers, 2001

[7] S. Palnitkar, Verilog HDL: A Guide to Digital
Design and Synthesis, Sunsoft, 1996

[8] Designware Foundation,
http://www.synopsis.com/products/designware
/

[9] PicoJava Core,
http://www.sun.com/microelectronics/picoJava
/

