ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT

PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

AN AIDEV WHITE PAPER | MAY 2020

L T e —

* ———

Wercrop oracLe | rartner 2id@V

CONSULTING

Revision History

The following changes have been made to this document:

Date Revision
01.04.2020 Initial draft
18.05.2020 First released version
Credits

A special thanks to Dan Koloski and Sumesh Balakrishnan at Oracle for their
review of this paper.

2 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

ADOUL TN AU ... e e 4

L0 YT Y= PP 5
ASSUMPLIONS ...ttt e e e e e e et e e e e e e e be e e e e e e e e e e s nnnnbeneeeaeeaas 5
The Main Stages of Plugin Development............oooiiiiiieeeeeee e 6
Stage 1 — Identify plugin requirementsccccccoveeeeeeeeeieieeeeeeeee e, 7
Stage 2 — Source test enViroNMeNtS............ccoeveeeeeeieeiieeieee e, 8
Stage 3 — Understand the teChNOIOQYooueuueeeeeeiiiiieecceeee e 9
Stage 4 — Profile the required targetsooovveevveviieeiiiiiiiiiiiiiiiiiiiii 10
Stage 5 — Identify and define target metricsccccccvvvvvieviiiiiiiiiiie 13
Stage 6 — Develop the backend coOde..............couuvveeiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaeeaaa 20
Stage 7 — Stage the plUuQin..........coeeeeeeeeeiiiiiiiiii e 22
Stage 8 — Validate and compile the plugin.................coceeeieieciieeeieeiiieiciieeeeee e 26
Stage 9 — Import the plugin..............ooeeeeeeeeiiiiiiiiiii 27
Stage 10 — Deploy to the OMScooovvveeviiei 28
Stage 11— Deploy to the aQentceeeveeeveeiiiiiiiiiiiiiiiiiiieiiiiee e 28
Stage 12 — Add @ cUSIOM targetoeeeeeeeiiieeeeee e 29
Stage 13 — Custom Ul developmeENtcoooeuumieeiieeeeeeeeee e 35
Additional Considerations ... —— 40
(017 (o] I (=] o T 4 £ 40
CUSIOM JODS ..o 40
TAIGEE DISCOVEIY ...ttt a e e e e e 41
Oracle Enterprise Manager Mobile AppliCation...............cccoeeeeeeeiiecciiiiinaeeeeeei 41
L0701 o o1 101 o] o 1 42
Further Information ... ———— 42

3 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

About the Author

AIDEV is a UK-based independent Oracle Enterprise Manager developer operated
by Wardrop Consulting Limited, an Oracle Partner company.

It currently has several plugins on the Oracle Enterprise Manager Extensibility
Exchange:

= mongoDB

= NGINX
= SSL Certificate
= HBase

= Symantec VCS cluster
= REDIS Data Store

AIDEV has also engaged in the creation of custom plugins for Oracle Enterprise
manager customers, developed to meet their specific requirements.

Custom plugins enable seamless integration of non-Oracle supplied target types into
the Oracle Enterprise Manager 13c monitoring, alerting, reporting and configuration
management frameworks. The plugins are particularly suited to existing Oracle
Enterprise Manager customers who need to monitor/alert on new technology but lack
the knowledge or experience to do so easily.

AIDEV has been leveraging the Oracle Enterprise Manager Extensibility
Development Kit (EDK) to develop custom plugins since Oracle Enterprise Manager
10g.

By using the EDK’s powerful plugin development features, AIDEV can deliver
enterprise-grade plugins that provide customers with the functionality they require.

4 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Overview

This document details each of the main stages of plugin development using the
Oracle Enterprise Manager 13c Extensibility Development Kit (EDK).

Each stage in the process is explained, based on experience gained by plugin
developer AIDEV.

The aim of this document is to explain how plugin developers can leverage the EDK
to create powerful enterprise-grade custom plugins which seamlessly integrate into
Oracle Enterprise Manager 13c.

Assumptions
This document assumes the reader has basic experience of Oracle Enterprise

Manager 13c and the Extensibility Development Kit, including the components of a
plugin.

5 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

The Main Stages of Plugin Development

Oracle Enterprise Manager 13c plugin development is a multi-stage process.

At AIDEV, we perform each of the following distinct stages when developing a new
plugin:

1. Identify plugin requirements

2. Source test environments

3. Understand the technology

4. Profile the required targets

5. ldentify and define target metrics

6. Develop the backend code

7. Stage the plugin

8. Validate and compile the plugin

9. Import the plugin

10. Deploy to the OMS

11. Deploy to the agent

12. Add a custom target

13. Custom Ul development

Each stage identified above is described in detail within the following sections of this
document.

By following this process, plugin developers can easily create enterprise-grade
plugins for Oracle Enterprise Manager 13c.

6 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Stage 1 — Identify plugin requirements

The first stage in the development process is to identify exact requirements for the
new plugin.

For example, these could be a combination of any of the following:

= To monitor and alert on core component status across an environment

= To manage component configuration standards across a site

= To provide single-screen visibility of all components within a cluster

= To allow remote component control (stop/start) from within Oracle Enterprise
Manager 13c

= To provide a reporting capability for application availability

If we are developing a custom plugin for a customer, this stage typically involves the
plugin developer having meetings with the customer to identify and document all of
the main plugin requirements.

The developer may also need to liaise further with technical experts or support staff
to gain an understanding of how the target technology works.

Investigation should be performed into how monitoring can be achieved, taking into
consideration any metric retrieval interfaces that are published by the technology.

Once the main requirements for the plugin have been identified, the development
process can move on to the next stage — sourcing a suitable test environment.

7 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Stage 2 — Source test environments

Obviously this is a very important stage — plugin developers clearly require a test
build, sandpit, VM, physical or similar environment to connect to and develop the
plugin against.

They will also need to deploy and test the plugin against each Oracle Enterprise
Manager supported by the plugin.

Target Environment

It is essential that all major releases and configurations of the custom target(s) are
catered for and can be tested against.

This is particularly important for plugins that intend to support multiple target versions.
Our mongoDB plugin supports multiple versions of mongoDB (version 2.3 to the
current release 4.x) hence requires test environments for each major mongoDB
release.

We typically use lightweight virtual machines for test environments as they help
facilitate speed of delivery whilst maintaining flexibility in environment build options.

Oracle Enterprise Manager Environment

Plugin development must not be performed against a Production Oracle Enterprise
Manager environment. Plugins will have to be deployed multiple times as part of the
testing process and failed deployments may require a backout/restoration of the
whole Enterprise Manager environment.

It is also essential that all major versions of Oracle Enterprise Manager supported by
the plugin are tested against. The EDK version used to create the plugin needs to
support all Enterprise Manager versions being tested against. For example, the
developer may choose to develop the plugin using EDK v13.3 and certify it against
Enterprise Manager 13.3, 13.4.

We strongly recommend using dedicated Enterprise Manager environments for
development, ideally hosted on virtual machines to facilitate easy backout/restoration.

Once the required test environments have been sourced, the plugin developer
should begin to gain familiarity with the target technology. This is detailed in the next
section ‘Understand the technology'.

8 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Stage 3 — Understand the technology

It is extremely important that the plugin developer has a technical understanding of
the target technology prior to developing the plugin.

Expert level knowledge is not essential. A fundamental understanding of the
technology will however help ensure the plugin is appropriate for purpose.

The developer should assess whether a local or remote Enterprise Manager agent
should be used to monitor the target technology. Remote agents allow for easy
monitoring of multiple targets running across varied hosts and operating systems,
whereas local agents permit the capturing of metrics and running of OS jobs without
the need for remote connectivity.

For example, the following steps were required when developing our mongoDB
plugin:

- Learn the core configuration aspects of the technology.
Example: MongoDB uses 'sharding' - data distribution across multiple
machines. An understanding of mongoDB sharding directly influenced our
decision to maintain a single target type for mongod and mongos type
instances. This allowed the gathering of common metrics for all instance
types whilst providing additional sharding metrics for mongos instances.

- Understand the security model.
Example: Following extensive testing, we were able to identify the
roles/privileges needed to retrieve metric information. This in turn defined the
configuration required within mongoDB to allow Oracle Enterprise Manager
monitoring.

- Investigate how targets can be monitored programmatically.
Example: Various tests were performed against sandpit environments before
we opted to use the mongoDB Java drivers for our development. This
approach provides the greatest portability and flexibility for our code, whilst
permitting remote metric capture and JavaScript based job execution.

If the developer has limited knowledge of the technology, they should aim to learn
the required skills, using online materials and testing against sandpit environments.

They may also choose to engage with specialists to further their understanding of the
technology.

Once the developer has a sufficient level of technical understanding, they should
begin to assess and document the required target(s), as detailed in the next section.

9 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Stage 4 — Profile the required targets

It is essential that a plugin developer understands the target(s) required for a new
plugin. Target properties and relationships need to be identified and defined prior to
commencing plugin development.

Target properties
Target properties can serve the following purposes:

- They identify each attribute of the custom target
- They provide information to the agent-side plugin code to enable connectivity
to the target and perform metric retrieval

- They can permit association between related targets

A custom target will have multiple properties. For our mongoDB plugin, we identified
the following properties for the mongodb_db target type:

 Property Name Optional Read Only
servername
port
jarloc
ssl
sslstore
mongo id

Klz|=2|2|1=2=2
zlz|z2|2|=2=2

These properties map directly to the inputs provided when manually adding a
mongoDB target into Enterprise Manager:

Properties

* Monitoring Host Jar File

Location /home/oracle/mongojars

* Port 27017
* SSL Truststore NONE
* SSL enabled R
[TRUE|FALSE] FALSE
" ServerName. mgo011,aidev.uk
mongoDB Environment .
Identifier PROD_HR

10 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Security credentials

Optionally, security credentials may also be required to allow the backend code to
communicate with the managed component.

Monitoring credentials normally map to target properties, initially supplied when the
target is added.

Our mongoDB plugin uses the following properties to authenticate against a
dedicated monitoring account to retrieve metric data:

 Property Name Optional Read Only
Username N N
Password N N

These properties map directly to inputs provided when adding in new mongoDB
targets and result in security credentials of type 'mgoCreds' being created in
Enterprise Manager:

mongoDB Credentials

Credential type mgoCreds
*
Username em_monitor
*
Password seeee

* Confirm Password ««seees

Plugin developers must identify and document the required target
properties/credentials for each target type.

11 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Target relationships

Some plugins may require multiple related target types, whilst other plugins might

contain only one target type.

Our VCS plugin contains the following related target types:

Target Type Relationship

vcs_ cluster Top level cluster target - can
contain 1..x vcs node targets

vcs_node Node level target - can contain

1..x vcs node group targets
Member of vcs cluster

vcs_node group

VCS group target per node - can
contain 1..x vcs resource targets

vCs_group

VCS group target- cluster type
target containing 1..x
vcs _node group targets
Provided by wvcs cluster target

VCs_resource

Bottom level target - maps to
cluster resource in VCS
Member of vcs node group target

Target relationships aid the use of core Enterprise Manager features such as
Topology Viewer and problem root cause analysis.

If related target types are required, developers should identify and document all
required target types and relationships during this stage.

Once the developer has identified and documented the required target properties,
security credentials and relationships, this data will input into subsequent stages of

the development process.

At this point, the developer should then move on to the next stage in the process —

metric definition.

12 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Stage 5 — Identify and define target metrics

A custom target type will require various metrics to determine component status,
performance and configuration.

We find that at this stage it helps to identify and document the metrics that will be
implemented, their data types and any meaningful thresholds that can serve as a
basis for alerting.

Metrics can then be added into the required XML files within the plugin stage
directory tree (see Stage 7, ‘Stage the plugin’). Each defined metric will also map to
programmatic logic developed within the backend code (see Stage 6, ‘Develop the
backend code’).

This stage should be performed in conjunction with the next two stages. New metrics
should be identified, corresponding logic developed in the backend code to allow
agent retrieval of the required metric data, and finally metric definition and collection
behavior added to the staged plugin XML files.

Agent Side Metrics

Traditional Enterprise Manager metrics are collected by the management agent, then
uploaded to the OMS. Most metrics within a plugin will be of this type.

The first metric to define, and the only one which is mandatory, is Response.
This metric is required for all non-cluster target types and determines one column,

Status, indicating the current target availability.

For our mongoDB plugin, the Response metric is documented as follows:

Metric Name Col1 Collection
Frequency
Response Status [NUMBER] | Every 1 min

The next step a plugin developer should take would be to develop backend code to
retrieve the Response metric (see Stage 6).

XML content for this metric can then be added to the staged target metadata and
collection files(Stage 7).

13 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

For our mongoDB plugin, the metadata XML entry for the Response metric is as
follows:

<Metric NAME="Response" TYPE="TABLE">
<Display>
<Label NLSID="mg_resp">Response</Label>
</Display>
<TableDescriptor>
<ColumnDescriptor NAME="Status" TYPE="NUMBER">
<Display>
<Label NLSID="mg_status">Status</Label>
</Display>
</ColumnDescriptor>
</TableDescriptor>
<QueryDescriptor FETCHLET_ID="0SLineToken">
<Property NAME="perlBin" SCOPE="SYSTEMGLOBAL">perlBin</Property>
<Property NAME="scriptsDir" SCOPE="SYSTEMGLOBAL">scriptsDir</Property>
<Property NAME="ENVMGO_PORT" SCOPE="INSTANCE">port</Property>
<Property NAME="ENVMGO_HOST" SCOPE="INSTANCE">servername</Property>
<Property NAME="command" SCOPE="GLOBAL">/bin/bash %scriptsDir%/mongo.sh response</Property>
<Property NAME="startsWith" SCOPE="GLOBAL">em_result=</Property>
<Property NAME="delimiter" SCOPE="GLOBAL">=</Property>
<Property NAME="ENVMGO_USERNAME" SCOPE="INSTANCE" OPTIONAL="TRUE">Username</Property>
<Property NAME="ENVMGO_PASSWORD" SCOPE="INSTANCE" OPTIONAL="TRUE">Password</Property>
<Property NAME="ENVMGO_JARLOC" SCOPE="INSTANCE">jarloc</Property>
<Property NAME="ENVMGO_SSL" SCOPE="INSTANCE" OPTIONAL="TRUE">ssl</Property>
<Property NAME="ENVMGO_SSLSTORE" SCOPE="INSTANCE" OPTIONAL="TRUE">sslstore</Property>
</QueryDescriptor>
</Metric>

Once the Response metric has been identified, the backend code developed and the
XML content added, the plugin developer should move on through each additional
metric in turn.

A target type will normally contain many additional metrics — these could be single-
column or multi-column, single-row or multi-row, depending on the underlying data.

In the case of our mongoDB plugin, one example of a multi-column additional metric
is the serverStatus memory metric.

This metric captures two columns — Attribute (the key value) and Value.

Data is collected every 15 minutes by default.

This metric is defined as follows:

Metric Name Collection
Frequency
Memory Attribute [STRING] | Value [NUMBER] Every 15 min
key

14 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

The resultant metadata XML to be fed into Stage 7 for this metric is:

<Metric NAME="memory" TYPE="TABLE">
<Display>
<Label NLSID="NLS_METRIC_mongodb_databasememory">Server Status: Memory</Label>
<Description NLSID="NLS_DESCRIPTION_mongodb_databasememory"> </Description>
</Display>
<TableDescriptor>
<ColumnDescriptor NAME="Attribute" TYPE="STRING" IS_KEY="TRUE">
<Display>
<Label NLSID="NLS_COLUMN_mongodb_databasememoryAttribute">Attribute</Label>
</Display>
</ColumnDescriptor>
<ColumnDescriptor NAME="Value" TYPE="NUMBER">
<Display>
<Label NLSID="NLS_COLUMN_mongodb_databasememoryValue'">Value</Label>
</Display>
</ColumnDescriptor>
</TableDescriptor>
<QueryDescriptor FETCHLET_ID="0SLineToken">
<Property NAME="command" SCOPE="GLOBAL">/bin/bash %scriptsDir%/mongo.sh memory</Property>
<Property NAM scriptLoc" SCOP GLOBAL" OPTIONAL="TRUE">%scriptsDir%</Property>
<Property NAME="delimiter" SCOPE="GLOBAL" OPTIONAL="TRUE">|</Property>
<Property NAME="ENVMGO_PORT" SCOPE="INSTANCE">port</Property>
<Property NAME="ENVMGO_HOST" SCOPE="INSTANCE">servername</Property>
<Property NAME="ENVMGO_USERNAME" SCOPE="INSTANCE" OPTIONAL="TRUE">Username</Property>
<Property NAME="ENVMGO_PASSWORD" SCOPE="INSTANCE" OPTIONAL="TRUE">Password</Property>
<CredentialRef NAME="monCreds">mongoCredsMonitoring</CredentialRef>
<Property NAME="ENVMGO_JARLOC" SCOPE="INSTANCE">jarloc</Property>
<Property NAME="ENVMGO_SSL" SCOPE="INSTANCE" OPTIONAL="TRUE">ssl</Property>
<Property NAME="ENVMGO_SSLSTORE" SCOPE="INSTANCE" OPTIONAL="TRUE">sslstore</Property>
</QueryDescriptor>
</Metric>

Note how the ‘command’ property runs the backend code, mongo.sh, passing in a
parameter ‘memory’ - this returns metric data in the following format:

virtual 11645
bits|64
mappedWithJournal |@
mapped | @
resident|30

The corresponding collection XML for this metric is:

<CollectionItem NAME="memory" UPLOAD="YES">
<Schedule>
<IntervalSchedule INTERVAL="15" TIME_UNIT="Min"/>
</Schedule>
<MetricColl NAME="memory">
<Condition COLUMN_NAME="Value" OPERATOR="GT" OCCURRENCES="1"

MESSAGE="The value of %columnName% for %keyValue¥ is ¥value%"
MESSAGE_NLSID="EMAGENT_DEFAULT_MESSAGE_WITH_KEY"
CLEAR_MESSAGE="Alert for %columnName¥% for ¥keyValue¥ is cleared"
CLEAR_MESSAGE_NLSID="EMAGENT_DEFAULT_NO_ROW_CLEAR_MESSAGE_WITH_KEY"/>
</MetricColl>
</CollectionItem>

Consideration should also be given to using advanced metric columns. These are
based on existing and previous values collected by the agent and are particularly
useful for calculating rate/delta based pseudo values.

15 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

We use an advanced metric column within our mongoDB plugin to calculate the delta
value for deletes based on the difference between current and previous
measurements.

This is the XML content within the target metadata file:

<ColumnDescriptor NAME="Delta_delete" TYPE="NUMBER" COMPUTE_EXPR="Delete - _Delete'>
<Display>
<Label NLSID="NLS_COLUMN_mongodb_rdatabase_delt_del">Delete delta</Label>

</Display>
</ColumnDescriptor>|

Metric alerting thresholds also need to be identified. For our mongoDB plugin, the
replication lag metric should provide the ability to alert when the collected lag is
greater than a given threshold.

This is the resultant collection XML:

<CollectionItem NAME="replLag" UPLOAD="YES">
<Schedule>
<IntervalSchedule INTERVAL="15" TIME_UNIT="Min"/>
</Schedule>
<MetricColl NAME="replLag">
<Condition COLUMN_NAME="Lag" OPERATOR="GT" OCCURRENCES="1"
MESSAGE="The value of %columnName% is %value%"
MESSAGE_NLSID="EMAGENT_DEFAULT_MESSAGE_WITH_KEY"
CLEAR_MESSAGE="Alert for %columnName% is cleared"
CLEAR_MESSAGE_NLSID="EMAGENT_DEFAULT_NO_ROW_CLEAR_MESSAGE_WITH_KEY"
/>
</MetricColl>
</CollectionItem>

Most metrics will only be collected when a target is up, however this is not always the
case (for example, log file content metrics).

The following collection XML example from our VCS plugin illustrates a metric
GroupsState that is also collected when the target is down:

<CollectionItem NAME="GroupState" UPLOAD_ON_FETCH="TRUE" COLLECT_WHEN_DOWN="TRUE">
<Schedule>
<IntervalSchedule INTERVAL="5" TIME_UNIT="Min"/>

</Schedule>
<Condition COLUMN_NAME="group_state" OPERATOR="EQ"/>
</Collectionltem>

16 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Repository Side Metrics

In addition to standard agent side metrics, repository-side metrics may also be
required.

Repository side metrics capture data from the Oracle Enterprise Manager repository

metric data by running custom SQL. They are particularly useful when multi-target
aggregate data or summary data is required for a metric.

To calculate the total size of all databases within a mongoDB target, our plugin uses
a repository-side metric running the following SQL:

select target guid, total as TOT from

(
select target guid, sum(value) as total
from mgmtSmetric current where metric name = 'dbStats'
and metric column = 'dataSizeMb'
group by target guid
)

This translates into the following metadata XML for Stage 7:

<Metric NAME="OMR_MGO_DB_DATA_SIZE" TYPE="TABLE" REPOSITORY="TRUE">
<Display>
<Label NLSID="NLS_METRIC_mongodb_dbOMR_MGO_DB_DATA_SIZE">Capacity: Total Data Size (Mb)</Label>
ipti D="NLS_DESCRIPTION_mongodb_dbOMR_MGO_DB_DATA_SIZE">Sum of data size for all databases</Description>

<TableDescriptor>

<ColumnDescriptor NAME="TOT" TYPE="NUMBER">

<Display>

<Label NLSID="NLS_COLUMN_mongodb_dbOMR_MGO_DB_DATA_SIZETOT">Total Data Size (Mb)</Label>
</Display>

</ColumnDescriptor>

</TableDescriptor>

<QueryDescriptor FETCHLET_ID="REPOSITORY_SQL">

<Property NAME="Type" SCOPE="GLOBAL">SQL</Property>

<Property NAME="Source" SCOPE="GLOBAL">select target_guid, total as TOT from

(select target_guid, sum(value) as total from mgmt$metric_current where metric_name = 'dbStats'
and metric_column = 'dataSizeMb'

</QueryDescriptor>
</Metric>

Repository side metrics are rendered alongside agent side metric in an identical
manner:

ORACLE Enterprise Manager Cloud Control 13¢ ..l Enterprise ¥ Targets ¥ * v @ v
4+ MONGODB_1 @
£ mongoDB ¥

MONGODS 1 > All Mstrics

All Metrics
Search Q Capacity: Total Data Size (Mb)
Description : Sum of data size for all databases
View » T= Collection Schedule Every 30 Minutes &
4 MONGODB_1 Upload Interval Every Collection

ty: Total Collection Count

Last Upload Mar 24, 2020 6:08:06 AM EDT

» Capacity: Total Data Size (Mb)
Metric Thresholds Real Time Value

Total Data Size (Mb) Not Set 23431

» Capacity: Total Index Count

ty: Total Index Sze (Mb]

(& Data shown in above table is collected in real tme:

ty: Total Storage Size (Mb)

17 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Configuration collection

Configuration collection metrics are another consideration - data collected from these
metrics can be viewed in Oracle Enterprise Manager under the ‘Configuration’ menu
option.

If a custom target type exposes configuration data, this can be defined as a
configuration collection and collected regularly.

Configuration collection metrics need to be marked CONFIG=TRUE in the metadata
xml and require a custom table to be defined within the plugin to hold the data.

In the case of our mongoDB plugin, we capture build configuration for each target on
a daily basis.

Two columns, ATTRIB and SETTING are captured by the backend code and stored
as configuration data in the Enterprise Manager repository:

Metric Name Col1 Col2 Collection
Frequency
MONGODB_BUILDINFO2 | Attribute Value [STRING] | Every 1 day

[STRING] key

The target metadata xml file contains the following entry for this metric:

<Metric NAME="MONGODB_BUILDINFO02" TYPE="RAW" CONFIG="TRUE">
<Display>
<Label NLSID="mgo_buildinfo2">mongoDB Build Info</Label>
</Display>
<TableDescriptor TABLE_NAME="MONGODB_BUILDINF02">
<ColumnDescriptor NAME="ATTRIB" COLUMN_NAME="ATTRIB" TYPE="STRING" IS_KEY="TRUE">
<Display>
<Label NLSID="attr_label">Attribute</Label>
</Display>
</ColumnDescriptor>
<ColumnDescriptor NAME="SETTING" COLUMN_NAME="SETTING" TYPE="STRING">
<Display>
<Label NLSID="sett_label">Value</Label>
</Display>
</ColumnDescriptor>
</TableDescriptor>
<QueryDescriptor FETCHLET_ID="0SLineToken">
<Property NAME="perlBin" SCOPE="SYSTEMGLOBAL">perlBin</Property>
<Property NAME="scriptsDir" SCOPE="SYSTEMGLOBAL">scriptsDir</Property>
<Property NAME="ENVMGO_PORT" SCOPE="INSTANCE">port</Property>
<Property NAME="ENVMGO_HOST" SCO "INSTANCE">servername</Property>
<Property NAME="ENVMGO_USERNAME" SCOPE="INSTANCE" OPTIONAL="TRUE">Username</Property>
<Property NAME="ENVMGO_PASSWORD" SCOPE="INSTAN OPTIONAL="TRUE">Password</Property>
<Property NAME="command" SCOPE O0BAL">/bin/bash %scriptsDir%/mongo.sh buildinfo</Property>
<Property NAME="delimiter" SCOPE="GLOBAL">|</Property>
<Property NAME="ENVMGO_JARLOC" SCOPE="INSTANCE">jarloc</Property>
<Property NAME="ENVMGO_SSL" SCOPE="INSTANCE" OPTIONAL="TRUE">ssl</Property>
<Property NAME="ENVMGO_SSLSTORE" SCOPE="INSTANCE" OPTIONAL="TRUE">sslstore</Property>
<CredentialRef NAME="monCreds">mongoCredsMonitoring</CredentialRef>
</QueryDescriptor>
</Metric>

18 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

A matching entry in the collection xml file enforces daily collection of the metric:

<CollectionItem NAME="mongdb_buildinfo2_snap" UPLOAD_ON_FETCH="TRUE" CONFIG="TRUE" COLLECT_WHEN_DOWN="FALSE">
<Schedule OFFSET_TYPE="INCREMENTAL">
<IntervalSchedule INTERVAL="24" TIME_UNIT="Hr"/>

</Schedule>
<MetricColl NAME="MONGODB_BUILDINFO02" />
</CollectionItem>

This corresponds to an entry in the snapshotlive xml file, detailing the custom table
and Ul labels to use:

<METADATA SNAP_TYPE="mongdb_buildinfo2_snap" TARGET_TYPE="mongodb_db" VER="1.,0">
<METADATA_UI_NAME>Database Configuration</METADATA_UI_NAME>
<TABLE NAME="MONGODB_BUILDINF02" SINGLE_ROW="N">
<UI_NAME>Build Info</UI_NAME>

<COLUMN NAME="ATTRIB" TYPE="STRING" TYPE_FORMAT="1024" IS_KEY="Y">Config Param</COLUMN>
<COLUMN NAME="SETTING" TYPE="STRING" TYPE_FORMAT="1024" IS_KEY="N">Value</COLUMN>
</TABLE>
</METADATA>

When the plugin is imported into Oracle Enterprise Manager, we get a custom table
created for the configuration data:

SQL>desc MONGODB BUILDINFO2

Name Null? Type
ECM SNAPSHOT ID NOT NULL RAW(16)
ATTRIB NOT NULL VARCHAR2 (1024)

SETTING

The table underpins the mongoDB configuration data rendered within Oracle
Enterprise Manager:

Config Param Value

maxBsonObjectSize 16777216

modules 0

ok 1.0

openssl.compiled OpenSSL 1.0.1f 6 Jan 2014

openssl.running OpenSSL 1.0.1f 6 Jan 2014
operationTime.$timestamp. 1

operationTime.$timestamp.t 1575407765

storageEngines ["devnull®,"ephemeralForTest","mmapv1*,"wiredTiger"]

Once a metric has been identified and defined, the plugin developer should move on
to the next stage, backend code development.

19 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Stage 6 — Develop the backend code

The next stage in the plugin development process, following metric definition, is to
create the method of communication between the Oracle Enterprise Manager agent
and the custom target — the ‘backend code’.

The primary focus of this stage is to create a communication and metric retrieval
mechanism. This will ensure that the metric data is captured and returned to the
agent in an appropriate format.

Oracle Enterprise Manager can monitor targets in a variety of ways, for example
remote or local, through perl scripts, bash scripts or Java RMI. If the agent can
communicate with the target to capture the required metrics and return the metric
data in a way that Enterprise Manager can understand, the list is practically endless.

At AIDEV, we begin by creating standalone scripts, passing in appropriate values for
expected target properties and evaluating the retrieved output.

As mentioned previously, the Response metric should be targeted first — this
governs target status and needs to return a number, either ‘1’ (up) or ‘0’ (down), to
the agent.

In this case of our mongoDB plugin, the captured metric data is prefixed with
'em_result="- expected output from the backend code for an 'Up' target is:

em result=1l

As each additional metric is defined, the backend code should be enhanced to
capture the required data.

Multi-column metrics will require a returned payload separated by a delimiter— this is
usually a pipe symbol.

As indicated earlier, for our mongoDB plugin the backend script output for the
memory metric is in the following format:

virtual 11645
bits|64

mappedWithJournal |0
mapped | @
resident|30

Appropriate error handling is also required in the backend code to ensure error-free
data is passed to the agent.

20 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Within our mongoDB plugin java source code, we handle connection timeouts in the
following manner, passing '0' back for the response metric if a timeout is encountered:

/* if cannot connect */
catch (com.mongodb.MongoTimeoutException e)

{

String action = args[@];

ifCaction.equals("response"))
{
System.out.println("em_result=0");
}
}

Each metric should map to logic within the backend code and be defined with a
command property in the staged target metadata XML (see next section).

For example, in the case of our mongoDB plugin, the asserts metric call is:

<Property NAME="command"
SCOPE="GLOBAL">/bin/bash %scriptsDir%/mongo.sh
asserts</Property>

We have found that test harnesses help to exhaustively test each metric being called
by the backend code. They also allow for output comparison when running against
varied configurations and versions.

An example of this is the following script, used to test each mongoDB metric within
our plugin:

#1/bin/bash

script to test metric operation for a mongoDB target
one input param - the metric name

#

Copyright aidev apr 15

#

V1.1
1. place this script in the mongoDB scripts directory within the agent home. cd to this location

2. edit the following vars to suit your environment
export MGO_SSL=FALSE

export MGO_SSLSTORE=NONE

export MGO_PORT=21070

export MGO_HOST=192.168.0.53

export MGO_PASSWORD=password

export MGO_USERNAME=em_monitor
export MGO_JARLOC=/home/oracle/mongojars
export JAVA_HOME=/oem/agent/core/12.1.0.3.0/jdk

3. run the script as follows:
#

test the response metric

sh ./metric_tester.sh response

code
export CLASSPATH="pwd" : SCLASSPATH
export dir="pwd"

Once the backend code has been developed for a specific metric, the developer
should move to the next stage, ‘Stage the plugin’, adding metric definition and
collection XML into the required plugin files.

21 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Stage 7 — Stage the plugin

The next stage in the process is to gather all information and scripts from the
previous stages and bundle them together into a skeleton plugin.

The most straightforward approach to take is to develop metrics individually,
performing stages 5, 6,7 and 8 each time.

Normally at this stage, we don't include any custom Ul content — this is added later in
the process.

A prerequisite to performing this stage is to install the Enterprise Manager
Extensibility Development Kit (EDK) and configure the plugin staging directory
structure and XML files.

It should be noted that recent versions of the EDK reflect the move from Adobe Flex
to JET for Ul development. For this reason, we recommend using the 13.2 EDK
u170321 or later with patch 25453518 — this maintains plugin support for Enterprise
Manager 13.2 and above whilst permitting a JET based UI.

All examples in this document are based on EDK 13.2 — we use this version for our
mongoDB plugin to ensure compatibility with Enterprise Manager 13.2 and above.

EDK install & staging area creation

The sample plugin code contained within the Enterprise Manager EDK zip file is a
good starting point to begin with when creating the staging area.

The EDK can be obtained from the following menu in Oracle Enterprise Manager:

o e O EH AL o
up Cox

22 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Deployment
» Download the Extensibility Development Kit to your workstation
= Set your JAVA_HOME environment variable and ensure that it is part of your PATH. You must be running Java
1.7.0_111 or greater. For example:
setenv JAVA_HOME /usr/local/packages/j2sdk1.7.0_111

setenv PATH $JAVA_HOME/bin:SPATH

= Unzip the downloaded zip file to your local system. For example:
Unzip 13.2.0.0.0_edk_partner.zip
It will create a bin directory under the directory where you have unzipped

= Change to bin directory and run empdk help (for example *empdk -help") from command line, for more details on

empdk verbs

Download the EDK from this page and follow the configuration instructions provided.

Create the plugin staging area by copying the location
samples/plugins/HostSample/demo hostsystem/opar/stage and
amending the content as follows:

plugin.xml
- XML to detail plugin metadata
- edit and amend according to plugin definition

agent/plugin registry.xml
- XML to detail metadata and files within the plugin
- edit and amend according to plugin definition

agent/metadata/target type.xml
- the main target XML file detailing target properties and metrics
- add in target metric XML as identified in Stage 5

agent/default collection/target type.xml
- metric collection behavior
- add in collection XML as identified in Stage 5

agent/scripts
- location for each backend script developed in Stage 6
- copy each script into here

agent/discovery

- leave this location empty for now as target discovery is beyond the scope of
this example

23 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

oms/metadata/assoc
oms/metadata/derivedAssocs
oms/metadata/discovery
oms/metadata/snapshotlive
oms/metadata/systemStencil
oms/metadata/systemUiIntegration
- leave these locations empty as the features are beyond the scope of this
example

oms/metadata/targetType/target type.xml
- this is typically identical to the agent equivalent

oms/metadata/default collection/target type.xml
- this is typically identical to the agent equivalent

oms/metadata/mpcui/target type.xml
- this would typically hold the mpcui Ul definition, page content and menu
layout prior to implementing a JET Ul
- as a starting point, create a minimum content xml file based on the supplied
sample projects

Note: It is extremely important that the plugin developer defines the
AgentCompatibility tag within the staged plugin.xml file.

This ensures that backward compatibility can be achieved between the newly
deployed OMS-side plugin and older agent-side plugin versions.

This is important when upgrading to a newer plugin release.

For our mongoDB plugin version 13.2.0.1.0 file, we define the following:

v

2.1.0.9.0</Version>

The above entry ensures that agent-side plugin versions 12.1.0.9.0 and 12.1.0.10.0
can work against the OMS-side 13.2.0.1.0 plugin.

Please refer here for further information on the required XML file content in each of
the required files.

24 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

XML content creation

The Oracle Enterprise Manager EDK contains multiple sample projects. At AIDEV we
recommend using these as a starting point for XML file creation and a point of
reference.

Oracle also provides a java-based tool, Plug-in Builder, for generating plugin XML
files. This can be particularly helpful for plugin developers with limited experience of
plugin development.

We normally develop our plugins manually, using previous plugin content as a
starting point. We do however recommend Plug-in Builder for first time plugin
developers to gain familiarity with the process.

[¢] New Gallery

All Technologies | Current Project Technologies

This list is filtered according to the current project’s gelected technologies
Categories items Show All Descriptions
- General {7 Enterprise Manager Plug-in
Applications Create Enterprise Manager Plug-in containing a single project for a
Connections Metadata plug-in

Deployment Descriptors 3 Ent M Pt . " P
4C Enterprise Manage - m -l
Deployment Profiles “ prt QRN TS WO BERNNG TIMG-1

Diagrams 4.€ Enterprise Manager Plug-in from sampie Plug-in
Java

Projects

XML

SREnterprise Manager Plug-in

Metadata
All Items

Plug-in Builder is outside the scope of this document, however more information can
be found at https://docs.oracle.com/cd/cloud-control-13.3/EMPRF/GUID-6A94EE77-
D7AA-4A30-83AA-B627C41D7264.htm#EMPRF12922.

As a developer creates new plugins, existing code can be reused from previous
builds/plugins.

We recommend adding each metric individually, each time performing a plugin
validation as detailed in the next stage to troubleshoot any issues.

25 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Stage 8 — Validate and compile the plugin
The empdk utility is bundled within the Oracle Enterprise Manager EDK.

It is used to compile an opar file from the plugin source directory structure created in
the previous stage.

The opar file can then be imported into Enterprise Manager and deployed to the
OMS and agent tiers.

Empdk also allows validation of the plugin content, checking for errors and
highlighting areas requiring further attention.

To run empdk validation, the command is:

empdk validate plugin -stage dir {stage location} -out dir
{opar location} -debug {debug log location}/debug.log

Sample output from a successful validation would be:

validating. .

Validating Plug-in metadata .. Passed
Validating Plug-in metadata semantics .. Passed
Validating Stoging Directory Passed
Validating MRS Syntax .. Passed
Validating MRS MPCUI .. Passed

Validating MRS Semantics .. Passed

Validating Metadata embedded SQL .. Skipped

Validating Object Names .. Passed

Plugin validation Passed

Validation Report generated to: /home/oracle/plugin-dev/13200_EDK/plugins/mongo/opars/plugin_validation_report_191122. txt

Stages 7 and 8 should be performed in small increments, adding new metrics, fixing
issues and re-validating the plugin.

Once all metrics have been added and final validation is complete for a plugin, it can
be compiled into an opar file:

empdk create plugin -stage dir {stage location} -out dir {opar
location} -debug {debug log location}/debug.log

Sample output:

jal idating Plug-in metodoto

¢/plugin-dev/13200_EDK/pluginsg

The opar file is /home/oracle/plugin-dev/13200_EOK/plugins/nginx/opors/13.2.0.1.0_aidev.nginx. xngx _2000_0.opor

26 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Important: The plugin version defined in the staged plugin.xml and
agent/plugin_registry.xml files must match the version of EDK being used, and in turn
the version of Enterprise Manager.

Any attempt to run empdk against a different version of plugin will result in the
following error:

[oracle]$ empdk create_plugin -stage_dir /home/oracle/plugin-dev/13200_EDK/plugins/mongo/plugin_dist_v132010 -out_dir /home/oracle/pl
ugin-dev/13200_EDK/plugins/mongo/opars -debug /home/oracle/plugin-dev/13200_EDK/plugins/mongo/debug.log

Validating Plug-in metadata ..
Error: Plug-in version specified in plugin.xml must match exactly with the one specified in agent/plugin_registry.xml

Once the opar file has been created, it can be imported into Oracle Enterprise
Manager and deployed for further testing.

Stage 9 — Import the plugin

In this stage, the developer will import the plugin opar file created in the previous
section.

At AIDEV, we recommend using a non-Production Enterprise Manager system for
plugin development — failures in plugin deployment can require full OMS or OMR
restoration to resolve.

Virtual machine hosted environments allow for a quick reversal of plugin deployment
hence should be considered for the Oracle Enterprise Manager system.

The plugin opar can be imported into Enterprise Manager in the standard way:
emcli import update -file={full path to opar file} -omslocal

This imports the plug-in into the Enterprise Manager environment and makes it
visible within the console.

Example:

$ emcli import update -
file="/home/oracle/13.2.0.1.0 aidev.mongo.xdbs 2000 0.opar" -omslocal

Processing update: Plug-in - Aidev mongoDB system monitoring plugin
for Oracle Enterprise Manager

Successfully uploaded the update to Enterprise Manager. Use the Self
Update Console to manage this update.

Once the plugin is imported into Enterprise Manager, it should be deployed to the
OMS and agent tiers.

27 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Stage 10 — Deploy to the OMS

Deploy the plugin to the OMS tier using the standard procedure.

Stage 11 — Deploy to the agent

Deploy the plugin to the management agent using the standard procedure.

At this point, the plugin should be visible within Oracle Enterprise Manager and
showing as being deployed to a management agent:

ORACLE Enterprise Manager Cioud Control 13¢ B Enterpiise ¥ s Wt O $£E-

Q. A SYSMAN +

Plug-ins Page Pefreshed Mar 30, 2020 €:30:16 AM EDT 4

This page I1sts tha phug-ins avalabie, downloaded, Bnd daployad 10 the Enterpriss Managar systam. Uss this pags 10 deploy or undaploy plug-ns

Actions View v % DeployOn v % Unceploy From * /" Check Updatee % Deployment Activities

Version
ent
Name Latest On Agent with Description
Latest Available Downloaded Management Plug-in

Server
» i ppicatiors @
» @mClow @

4 m Databases

& HBuse Datebase 132010 1320.1.0 132010 1 Aldev HBa98 systam monitaring phagin for Orarsie Enterpeivs Manager

8 oracte Detibass R 00 X o Entarprse Managar for Oracte Datat prehensye management for Cracie Datacase and related targats such
G oracie Detabase IAALON: SALO0 fisantaiond 0 2= Amsl Application Custer, Automatic Storage Management (ASM) =tc.
& mongeDB Datsbese. 132010 13201.0 132010 1 Aldey mangoDB system manitoring pugin for Dracle Enterpriss Mansgar

b fm Engincered Systems @

i Migdlewars @

1 Servers, Storage and Networl

& Ovacie Audit Vault and Dstaby 134.1.0.0 BRI « Entorprse Manage for Omcle Audit Vauit and Databass Frawall Y\WDF) provides manitonng and managemant of AVDF
Ovacis Audit Vaid atab: 0 34100 % O gt
@ Oracie Boacon 134000 134,000 13.4.0.00 1 Oracla Eaacon plugin (s msquined on the Managed Hosts 10 support beacon tast monforing capadilty

3410 3 Entarprse Manager far Onacle Consolkiaton Stanning and Chargeback provdes merering, chargeback and consoidation
Oracie slidation Plarainy 13.4.1.0.0 134100 % 9
SNV Gonfoialon Pt AR o planning for vasious Enterprise Manager targets.

B, Oracin ORAGHK Healthchecks 134.1.0.0 1BA100°% Enterprae Manages for Oracte ORAGhK Health Checks provides proactive heth check sferts for Enginesred and Neer
v inceal waend Riiins it Engineared Systoms

The plugin developer should now proceed to the next stage, adding custom targets
into Enterprise Manager.

28 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Stage 12 — Add a custom target

Once the plugin has been successfully deployed to the OMS and agent tiers, a
custom target can be added into Enterprise Manager.

The following example illustrates the adding of a custom mongoDB target:

Setup->Add Target-> Add Targets Manually

ooy v O-[C3 X A oo

Initial Setup Consale

Ba

Configure Auto Discovery Add Target s
Auto Discovery Results Extensibility »
Add Targets Manually Proxy Senings » i
Group Security »
Dynamic Group Incidents »
Administration Groups. Notificatens
Generic System Provisioning ana Patching
Redundancy Syatam My Oracle Suppont
Genenc Service Mddleware Management »

Manage Cioud Cerntrol

Command Une Intertace

Maragemant Packs »

Choose ‘Add Non-Host Targets Using Declarative Process’:

Add Non-Host Targets
Using Declarative Process

7

/" Add Target Doclaratively

Ak targets by explcitly specifying
monitoring proparves.

Click the spyglass:

Add Target Declaratively x

Targot
Type
Target Type
ADF Business Components for Java

ASM IO

e

ASM Proxy

Actiutty Graph

Analytics
Apache HTTP Sarver

Automatic Siorage Management

29 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Select the management agent host to add the target to, then click Select

Select Host >
4 Search
TametType Host
Targat Hame
Configuration Search «Xo Corfrrason zesech sostod
Saarch
Target Name Target Type Status
]
Mose S Seiec
Select Cancal

Select the custom target type in the target type box:

Add Target Manually x
Agent =
Hoat °mecaidevuk

Target
Type

Target Type

Traffic Director Instance
Usar Messaging Driver
User Massaging Sarvica
VoiceXML. Driver

Whem CIM Object Manager
Web Cache

Worklist Driver

XMPP Driver

mongoD8 Database

webcenter_portal_app

Add ... Cancel

Click Add to view the Target Properties screen

30 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

The target properties screen will be shown:

ORACLE Enterprise Manager Cloud Control 13¢c

Add: mongoDB Database
Add a target to be monitored by Enterprise Manager by specifying target monitoring properties
Target
* Target Name MONGODB_1
Target Type mongoDB Database
Host emcc.aidev.uk
Agent hitps://emcc.aidev.uk:3872/emd/main/
mongoDB Credentials

Credential type mgoCreds
* Username em_monitor
* Password seeeeees

* Confirm Password «eseseer

Properties
* R
Meonitoring Host Jar
File Location /home/oracle/mongojars
YPort 27031

* SSL Truststore ~ NONE

* SSL enabled
[TRUEFALSE) 'ALSE
* Server Name mongo1.aidev.uk

mongoDB Environment

\dentifier MONGO_PRODUCTION

Complete the required properties and click OK

The target will be added into Enterprise Manager:

Confirmation

Add Target - Completed Successfully

4 Hide

Added mongoDB Database MONGODS 1 on https://emce,aidev.uk:3872/emd/main/

Close

The target should now be visible and ‘Up’ in Enterprise Manager:

ORACLE Enterprise Manager Cioud Control 13¢

All Targets
Refine 8 View v Saarch Turget Name mongodd
A Target Type Target Name
4 Databases MONGODB_1
mengoDB Databass (1)
4 Target Status

up i

Baproiee @mueer fr O £ O A s
Auto Refresh Off

3 Page Arimshd Mar 20, 2020 8:11:04 AM EOT)

Save Search Saved Serches *

v Tagertoe s e
MorgoDB Databioss 4+

31 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

On the target home page, the ‘All Metrics’ link will show the metrics defined for the
target type. The following example illustrates the mongoDB memory metric defined

earlier in this document:

ORACLE Enterprise Manager Cloud Control 13¢c

4+ MONGODB_1 ©
£ mongoDB *

MONGODB_1 > All Metrics

All Metrics
Search Q Server Status: Memory
. 0 Collection Schedule Every 15 Minutes #

P Server Status: GiobalLock Upload Interval Every Collection

-

Sarver Status: LocalTime Last Upload Mar 20, 2020 6:20:18 AM EDT

¥ Server Status: Locks Attribute Value
» Server Status: Mem:

o virtual 1,763
¥ Server Status: Metrics: queryEx
» Server Status: Metrics: record bits 64
» Server Status: Metrics: Commas mapped 0
» Server Status: Metrics: Cursor
¥ Server Status: Metrics: Docume mappedWithJo... 0

«

» Server Status: Metrics: Operatic resident 208

-

Server Status:

v

Server Status:

Metrics: Replicat

Metrics: getlastE (& Data shown in above table is collected in real time.

After a period of time, the user can examine historical metric information for the

target. The following example shows historical data for the mongoDB memory metric:

ORACLE’ enterprise Manager Cloud Control 130

+ MONGODB_1 0

Bla Entarpion ¥ I,w,. * - @. Q. Q. A SYSMAN =

Page Fetreshod Mar 21, 2020 1:17:37 PM EDT)

£ mongoDB »
MONGODR_ 1 > Al Marics
All Metrics View Dotn Lust 28 Hown]
Search Q L
Average LastKnown Current
View v Attribute A Low Value High Vakie s Alert Triggered
s mappediithioural 0 o 0 0 ot Applcable
resicnt 27455 197 205 33 Not Appicable
jor Status: Aseents
» aatus: BockgroundiFiosl T hisnet Lo, b S v
L MUs. Connecton
N o Atiriute - resident
» u Extra nto Sustist Thresholds
’ ot ock
b Sarvar Status: LocalTme Last Known Value 303 Warning / Critical Mot Detred / Not Defned
b Sorvr Statuw: Locks Cofloction Timestamp Mar 21, 2020 1:07:22 PM EOT Comparison Oparator >
4 Server Satux: Memory Average Value 27455 Occurrences Before Alort !
Value Low / High Valus 187 / 305 Corective Actions Nooe
» Server Statux: Metrcs: queny€x

4 Metric Value History Options

or Status. Network

» Sorver Status O

* Sarser Status ouners %

¥ Sanver Status: OpcountarsRap!

b Sarver Statu; 2m ot 0 () 10 2AM @ o 05 08 10
March 200 2020 21

' W Vakoe: resident

Auto Pefresh

Lsst Collection
Timestamp

Mar 21, 2020 1:07:22 PM
Mar 21, 2020 3:0722 PM.
Mar 21, 2020 1:07:22 PM.

Modify Thresholds ...

Comgparw keys Compare Targets

32 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Metric collection behavior can be amended through the 'Metric and Collection
Settings' link.

The following example illustrates the mongoDB plugin memory metric default
collection settings:

ORACLE Enterprise Manager Cloud Control 13¢ gapvpey @nou- v O £ O M s

N
+ MONGODB_1 0
& mangole v

mongoDB Database; MONGODB_1| > Metric and Colection Settngs > it Collection Settings: Server Statis: Memory
Edit Collection Settings: Server Status: Memory

)

i
|

Editing the coliection settings of a metric wil aiso affect the cllection settings of other metrics that are based on thase metrics. The afectad metrics are fsted in the Affected Metrics section.
Collection Schedule

Data Coliection Enabled Disable;
Collection Frequency
Default Frequency Every 30 Minutas

Prequency Type By Mimges &

Repeut Every 15 Mistes

Use of Metric Data

' Alerting and Mstoncal Trending
Upkoad Irterval | Collections:
ot ik i e o s e
Aaring Gty

bt Histery wh b saved

The Upicad Interva¥ cetermines how often a metric value is Lploaded to the Mansgement Repaskory. For exampie, f 3 metric vakae b5
coflectad wwiry 5 mites, and the Upioad Tntenal s set to & (every 6t Colection), the metric vvus & uploaded every 30 minuges.

Affected Metrics

Affected Metrics &

Server Ststus: Memory

(7 TIP Coection settngs of al matrics that beong 10 the above fissed metrc groups wil be affiected

Sonce) Continise

Custom key-based alerting thresholds can also be added. In this example, we have
added Warning and Critical thresholds for the value obtained for the virtual key:

ORACLE’ enterprise Manager Cloud Contro! 13c Satepces @b fr O £ O, A s
+ MONGODB_1 0 B emoc aidonik
& mongoDB *
mongoD8 Database: MONGODS_1 > Metric and Collection Setengs > Edt Advanced Settings: Value
Edit Advanced Settings: Value
Carxed| Contiue|
Alert Message
Edt Alert Meszoge < Reset Alert Message 7 Alert Message Properties
Aert Messoge The valon of Secctumediama’s for FheyVakaots & Sovaluete
These properties can be U5d in MEssIgR. Property NAMEs are Case-5ensitive. To £5CapR "%, Usa N5
¥ TIP Tha kength of the A4t MEss208 Cannot be Mare than 4000 characters. ‘Neswe Destriphion
Sometric KN Metric narme for which the alert has been triggered
Hcclumedame Metric cobamn naeve for which the alert has been triggered
Sowarming_thveshold e Threshokd for which warning violation Nas been triggered
ecritical_threshoid®e Threshold for which critical alert has been trggered
Heseventyte Severity level of the alert or vioation
Nooperatorts Comparizon operation used to trigger the aert
Sorum_of_ccourte Number of Occurrences after which alert has been triggered
Soslueth CQurrent metric velue on which slert has been triggered
SokeyValuey Qurrent meric value for 8 kery on which sert has been triggered
Monitored Objects
The table lists af s metric. differet for each
s8] paarow
£t Remove|
Salect Attriute Comparison Operator Waming Trrasnok! (Creicai Threshaid _mm
vitusl > 2000 5000 None
Nl cthers > None:
TIP Empty Thresholds will cisable alerts for that metric.
2 TIP You cen optiknaly use *%" widcard tharacter to represent multiphe objects, (Exsmple: ful®% represets fui, ul2 etc)
TIP ¥ the olject name contains "% or *\", specify it as "\%" or \\" (Example: ‘c/\temp’ neads to be entered as t:\\temp’)
Cancel| Continue|

33 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Once a target had been added, the plugin developer should test each metric from
within Oracle Enterprise Manager.

Data collected and rendered within Enterprise Manager should be verified as being
appropriate and correct.

The Metric and Collection Errors menu option can be used to identify issues:

ORACLE Enterprise Manager Cloud Control 13c

4+ MONGODB_1 ©
Home

@ Open the home page in a new window.
Monitoring L All Metrics
Diagnostics ’ Metric and Collection Settings
Controt » Metric Collection Errors
Job Activity Status History
Information Publisher Reports Incident Manager
Members ’ Alert History
mongoDB Control - Blackouts

Any issues or metric collection errors should be investigated, resolved, re-tested and
the plugin source updated accordingly.

This action may involve additional tracing on the Enterprise Manager agent or by
adding debug scripting into the backend code.

As the plugin code evolves, developers can use the ‘emctl register oms
metadata’ command to update Oracle Enterprise Manager with the changes made
to core XML files.

Alternatively, if using a VM based development environment, Oracle Enterprise
Manager can be quickly restored. Newly compiled opar files can then be imported,
redeployed and subsequently tested again.

Following the successful undertaking of this stage, the plugin is nearing completion.

Developers should now progress to the next stage, custom Ul development.

34 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Stage 13 — Custom Ul development

Once the plugin is imported into Enterprise Manager, and a target has been added,
the plugin developer can create the custom plugin Ul.

This is the final stage in the development process.

The plugin Ul should be created using Oracle’s JavaScript Extension Toolkit (JET)
through the Apache Netbeans IDE.

Oracle has provided sample Netbeans projects within the EDK sample project code.
We recommend using these as a starting point for Ul development.

Apache Netbeans allows the plugin developer to create a JavaScript library that can
be added into the plugin staging area and included within the final compiled opar file.

Once imported to the OMS, this library is used by Enterprise Manager to render the
Ul pages for target types contained within the custom plugin.

The Netbeans project contains code for each custom Ul page — a JavaScript
controller and a corresponding HTML based view page.

All controller code is contained within the js branch of the Netbeans project:

- ®
P e ¢
Projects XI Files] Services I Debugging I =
v §) mongoDB

¥ ga Site Root

» €ss

» data
g em
> emx
Yalls
¥ g aidev

> discovery
]
& HomePageController.old.js
|| HomePageController_copied.js
HomePageModelController.js
MetricHistoryDialogController.js
assertsPgController.js
clientPgController.js
clientPgController_1.js
clientPgController_2.js
dbinfoPgController.js
envHealthPgController.js
hostinfoPgController.js
logsPgController.js
profilerPgController.js
securityPgController.js
shardingPgController.js
ssPgController.js
startPgController.js
stopPgController.js
storagePgController.js
topPgController.js

v
o
4

35 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

All screen content is defined in HTML files, within the View branch of the project:

. e
el A= - €
Projects x | Files | Services | Debugging 17%
» 5] discoverybuild.xml
|1 node.exe
& r.js
v
v [aidev
> bindings
> discovery
> user
|8] HomePage.copied.html
|#] HomePage.htmi

[

HomePageExtModel.html
HomePage_copied.html
MetricHistoryDialog.html
assertsPg.html
clientPg.html
dbinfoPg.html
envHealthPg.htm|
hostinfoPg. html
logsPg.html
profilerPg.html
securityPg.html
shardingPg.html
ssPg.html

startPg.huml|
stopPg.htm|
storagePg.html|
topPg.html

4 O O O)) O Y O Y O Y Dy Y

[wi[«

(CRCYC

Netbeans allows the plugin developer to iteratively code and test in a standalone IDE,
independent of Oracle Enterprise Manager.

Plugin interfaces can be run in a standard web browser locally, allowing quick
development and testing of each Ul page.
We typically develop Ul screens using Netbeans and the Google Chrome browser.

Chrome also provides a Netbeans connector — this allows for deeper tracing and
debugging of the Ul from within Netbeans.

The logon screen within the Netbeans test harness allows for custom Ul code to be
run against a specific target in Enterprise Manager:

Management Server Login X

Protocol http @ https

Management Server Host 192.168.0.77
Management Server Port 7803

Administrator Username

sysman
Administrator Password racseansn
Target Name MONGODB_1
Target Type mongodb_db

OK Cancel

36 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

The following example is of the mongoDB target home page for the target added
earlier in this document:

ORACLE' Enterprise Manager Cloud Control 13¢ o SYSMAN +
MONGODB_1 & [pp—
* mongoDB * Page Refreshed Fri Mar 20 2020 11:07:16 GMT+0000 (Greanwich Mean Time) &
Database Objects (Database Size (Mb) ()
Process Type: mongod 80
Uptime (Days): 0,07) admin
Environment: MONGO_PRODUCTION &0
Size (Mb): 75 Ld | &0
|
I 20
Connection String: osboxes:27031 sy I °
OS: Limax
Version: Ubunty 3.16.0-77.99-14.04.1-generic 3.16.7-ck127 00 04M 0BM 12M 18M 20M 24M admin config local test
Architecture: x86 64
Processor Cores: 4 N
Memory (Mb): 2001 Collections < Network Bytes Injout (¥
Process Id: 2750
sdmin | oM
S sEconon e = o
Status: SECONDARY ical | ol
Lag: 000 1o °
1015AM 1025AM 10:35AM 10.45AM 1055AM
o 1+ 2 3 4 5 6 7 B8 9 Mar 202020
opLog Window: 100488245 ;".7
opLog Size (Mb): 1967.264
Connections - Connections Created ('
800 raK /
600
400
aidev ok
© 2020 200
0 00
1010AM 1020AM 1030AM 10:40AM 10550 AM 1010AM 10:20AM 10:30AM 1040AM 10:50 AM
Mar 20 2020 Mar 20 2020

Metric information can be retrieved from Enterprise Manager and rendered
graphically within the Ul pages.

This screen illustrates the values obtained for the memory metric defined earlier in
this document (all data on this screen is historical and retrieved directly from the
Oracle Management Repository):

serverStatus: memory

Last 60 Minutes

1.8K
1.5K

12K - Value (bits)
= Value (mapped)

0.9K Value (mappedWithJournal)
= Value (resident)

0.6K Value (virtual)

03K

0.0

1015 AM 10:25 AM 10:35 AM 10:45 AM 10:55 AM
Mar 20 2020

37 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Screens can also capture and render real-time metric data, obtained directly from the
custom target by the Enterprise Manager agent.

This example shows currently connected clients, captured real-time from mongoDB:

ORACLE Enterprise Manager Cloud Control 13¢c Fo SYSMAN =
MONGODB_1 ¥ & emoeo aidev.uk
* mongoDB ~ Page Refreshed Fri Mar 20 2020 11:13:18 GMT+0000 (Greenwich Mesn Time) &
Clients
This table detals all current operations within db currentOp
Descriptian Clent Opid Threaid connid Namespace Active Waiting op numYiekds Query
rsSync-0_16613 56813 v false none 0 0
manitoring keys for 5 talso none a o
HMAC,§
conn36.56602 102.168.053:54477 56602 36 focal opiog s v false getmore repiData” 1 $readPraferance* (" mode" ‘secondan®

1684702783 "*:1}),"signature:{"eyld" 675 £53:
0 u

conmod3 56614 192.168.077:17162 56614 1943 sdminScmd.sggregate o false command 0

ary
- SomnOps- it Sal thush)

w1 28 v false neae o

RecordStoreT hroad:

Ioz3l.opiog 1s.29

°

ReplBatchar 56612 56612 v fatsa ncae

o

Page 1 of1{1-60f 6 items) 1

Traditional legacy Flex-type objects can be used within the Ul pages — this is enabled
through the inclusion of mpcui libraries within the supplied Netbeans project code.

I o
CPU Utilization Area Chart CPU Usage (%)
40
35 e
Tt |
30 %
r.: W CPUNon-.. . e e — mo
e
% 2 M CPU Nice (.. g 1 R
= 20 CPU Syste... 3 B
> s W CPUOWa. 2 C—— ":2
e B CPUIRQ (%) O —— .4
e s S
5 —_—
|
0
3115PM 3:45PM 0 20 40 60 80

Dec 5 2019

Flex-type objects enable plugin developers with Flex experience to move to JET
based coding with relative ease.

They also allow legacy Flex based plugins to be migrated to JET relatively quickly.

Oracle has documented the similarities between Flex and JET objects here.

38 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

For example, an availability data service in JET:

<mp-avail-data-service id="ads'" params="targetName:appModel.target.name,
targetType:appModel. target.type, days:1">
</mp-avail-data-service>

Compared to the Flex equivalent:

<mp:AvailDataService id="ads" targetName="{appModel.target.name}"
targetType="{appModel.target.typel}"/>

We recommend using Oracle’s documentation as a starting point for Ul development
in JET.

The sample plugin project code contained in the EDK is also an excellent reference
point for developers.

For the purpose of Ul development testing, newly compiled JavaScript libraries can
be imported directly into Oracle Enterprise Manager from a stage location:

emctl register oms metadata -service mpcui -file
/stage/mpcui/mongodb database.xml -pluginlId aidev.mongo.xdbs

This allows the developer to test Ul changes from within Oracle Enterprise Manager.

Once Ul development is complete, the resultant JavaScript libraries can be placed
within the plugin code staging area.

The finished plugin opar file can then be compiled and imported into a clean
Enterprise Manager environment for final testing.

39 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Additional Considerations

Outside the scope of this document, some other areas of consideration when
developing a plugin are:

Custom Reports

Developers can include Bl Publisher and Information Publisher reports in their plugin
code. Reports can be easily developed within Enterprise Manager then copied to the
plugin staging area before opar recompilation.

ORACLE’ Enterprise Manager Gioud Gontrol 130 [Sp— sy ey O v O A seune
Information Publisher Reports
mongoDB Network Statistics
Printatle Puge i
mgo.

Report Generated 05-Dec-2019 08:07:49 PsT

W00 390,110 W 30340110

3 4 S 3 4 5 3 4
December 2019 December 2019 December 2019
Bytes In (Delta) Bytes Out (Dolta) Num Requests (Dalta)

1M m0_340.11.0 W o010

3 4
December 2012 December 2019

Prinahe Puge

Custom Jobs

Job definitions can be contained within a plugin’s content.

Our mongoDB plugin facilitates component control as well as providing the ability to
remotely execute JavaScript code against targets. These operations can be run
seamlessly within the Oracle Enterprise Manager jobs framework.

ORACLE Enterprise Manager Cloud Control 13¢

Job

Create 'Execute mongoDB .js file' Library Job

Genersl Parameters Credentials Schedule Access

ocat : g n
be used for authe
ssIPEMKeyFile [NONE
Entar PEM hey i for SSL. communication, Loave a5 NONE for fon SSL
sdCAFile [NONE
Enter CA PEM fe for SSL communication. Leave 85 NONE for ban SSL
* s Seript |printson{db.serverStatus());

40 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Target Discovery

Plugins can use guided target discovery. Our VCS plugin allows for target discovery,
initiating custom code to identify VCS components on a host, passing the relevant
target and association information back to Enterprise Manager.

ORACLE Enterprise Manager Cloud Control 13¢

D

VCS Target D Y
W% Add VCS Targets,
e

Yy

o8 oo v (@) Twgers v

Tips: Select Agents Configure inputs Configure Tarpets Summary
Satect Agerts:
St the agerta you w13 2 VO target 32 - fyaty thie sneud Add VCS Targets: Configure Targets
mcite o Curter howts
Ats st et e VTS maageant sl 54y desieyed
rersewnans =
Cich Nawt 2 procead 1o T Contgars oum Eage Select Targets To Add to Console
Status Agent Target Name Target Type
Corogurs bputs. ¢ ven2 n e vice cluster! s
¥ e e g g i o i Unmanaged veud localdomain: 3879 ClusterSenvice.cluster! CLUS] ves_group
sustee
Thio sy 50 bl 16 ke panesie Saapet vt 16 S walantd Unmanaged ves! locaidomainz3a7e ClusterService.clusteet CLUS1 ves_group
ey acroas the EM aviste
Tis whe et 15 w1 anatog EN maregul vt e thal T s s Unmanaged ves! jocatdomaind8 79 ClusterSenvice vos! cluster] C ves_node_group
ccrmectly
Thve ey e e Dlank f GAuster nameR are Lnue Smee your estate Unmanaged vos2 kocaidomain.3878 ClustarService vos2 clustert C ves_noce. group
SN whulher & pibige aotes tunt 4 5o e vand. Unmansged ves! locaidomain3879 ORCL-Poraliou vos! chuste vos_resource
Thva ivhusnces the use of 4 501, 4g. 805, by DO the tarpet Sacovry
oricom wa taget merro cotecon es2 2875 - SR ——
Ok Mt s Snernd o Yot o Unmanaged ves2 locaidomain:3879 ORCL-P oraGroup vos2 CUST VOu_resource
managed vesl jocasomain:3879 ORCL-Netianr.oraGroup vCs 11 vC8_resource

Cartugurs Taryets
Tag Gacovery WasE B S3payed Jnmanaged ves2 localdomain:3879 ORCL-Netienv.oraGroup. vos2.4 ves_eeource
i the Prmgartan tassn 1w detacted tarpet sooparties
Sewct tw tagata you Wt 10 300 s EM and clok et Unmanaged vost locakdomain:3879 ORCLvol oraGroun ves 1 chusl ves_resource

Jnmanaged vos? iocaidomain:3879 ORCLvol.omGmup vesd clust ves,_resource

Tummary.

Ermarn sargens save een added cometly

* O B

O, A s

O

Stepdofd | Next | Cancel

More information on the above features can be found within the Extensibility

Programmer’s Guide.

Oracle Enterprise Manager Mobile Application

Oracle Enterprise Manager 13.4 introduces a new mobile application — this allows
the EM administrator to seamlessly interact with the EM monitoring and incident
management framework through an Android/Apple app.

Plugins do not require any additional functionality to leverage this capability —
integration is provided out of the box, allowing remote monitoring and incident
management of custom targets through a mobile device.

Targets
Filters (1) | Clear Target Statys 15
10 Results
; i T
S o
A e batabne
. B MO
& e b
ot aieting
B i
L T grssid
2y
v Q4 0 =

DETAILS EVENTS

The value of Status is 0

2

None
oAl
TARGET
! mgo_r0_1
mongoDEB Datsbase
INCIDENT DETAILS
2223

Triggered
4/22/20 3:46:54 PM
vt | o
4(22/2034737 PM
ADDITIONAL INFORMATION
aledory

o,
-

0 e &K

«

UPOATES mgo.ri.0

» ngoDB Database

+

OPEN INCIDENTS
New

o1 0o

PROPERTIES

Apr 22,2020 11:01:28 AM
100
emcc.aidev.uk 3872

Eastemn Daylight Time

Target

41 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

Conclusion

At AIDEV we have found that the Oracle Enterprise Manager 13c EDK enables rapid
and powerful development of custom plugins.

By following the stages outlined in this document, plugin developers can create
enterprise-grade plugins to meet custom requirements.

Plugins created in this manner allow for a seamless integration into Oracle Enterprise
Manager 13c, leveraging full use of core features such as monitoring, alerting,
reporting and configuration management.

Apache Netbeans allows for iterative development of feature-rich JET based screens,
rendering core target metric and configuration information to the end-user.
The inclusion of mpcui libraries within the EDK sample projects reduces the learning

curve experienced by Flex developers and allows for a smooth migration of existing
Flex-based plugins to a JET/js/HTML format.

Further Information

Aidev
http://www.aidev.uk

Oracle Enterprise Manager 13c
https://www.oracle.com/technetwork/oem/enterprise-manager/overview/index.html

Oracle Enterprise Manager Extensibility Exchange
https://apex.oracle.com/pls/apex/oracle enterprise _manager/r/em-extensibility-

exchange-v3

Oracle Enterprise Manager 13c Extensibility Documentation
https://docs.oracle.com/cd/cloud-control-13.3/nav/extensibility.htm

AIDEV/Wardrop Consulting Ltd is an Oracle Partner based in the UK, specializing in Oracle
Enterprise Manager.

We offer Oracle Enterprise Manager consultancy services, including custom plugin
development for application vendors.

Please contact info@aidev.uk for more information.

W2rcrop oracLe | Partner 210GV

42 ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

