

ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT
PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

AN AIDEV WHITE PAPER | MAY 2020

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
2

Revision History

The following changes have been made to this document:

Date

Revision

01.04.2020

Initial draft

18.05.2020

First released version

Credits

A special thanks to Dan Koloski and Sumesh Balakrishnan at Oracle for their
review of this paper.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
3

About the Author .. 4	
Overview .. 5	
Assumptions .. 5	
The Main Stages of Plugin Development ... 6	

Stage 1 – Identify plugin requirements .. 7	
Stage 2 – Source test environments .. 8	
Stage 3 – Understand the technology .. 9	
Stage 4 – Profile the required targets .. 10	
Stage 5 – Identify and define target metrics .. 13	
Stage 6 – Develop the backend code .. 20	
Stage 7 – Stage the plugin ... 22	
Stage 8 – Validate and compile the plugin ... 26	
Stage 9 – Import the plugin .. 27	
Stage 10 – Deploy to the OMS .. 28	
Stage 11 – Deploy to the agent ... 28	
Stage 12 – Add a custom target .. 29	
Stage 13 – Custom UI development .. 35	

Additional Considerations .. 40	
Custom Reports ... 40	
Custom Jobs .. 40	
Target Discovery .. 41	
Oracle Enterprise Manager Mobile Application .. 41	

Conclusion ... 42	
Further Information .. 42	

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
4

About the Author

AIDEV is a UK-based independent Oracle Enterprise Manager developer operated
by Wardrop Consulting Limited, an Oracle Partner company.

It currently has several plugins on the Oracle Enterprise Manager Extensibility
Exchange:

§ mongoDB

§ NGINX

§ SSL Certificate

§ HBase

§ Symantec VCS cluster

§ REDIS Data Store

AIDEV has also engaged in the creation of custom plugins for Oracle Enterprise
manager customers, developed to meet their specific requirements.

Custom plugins enable seamless integration of non-Oracle supplied target types into
the Oracle Enterprise Manager 13c monitoring, alerting, reporting and configuration
management frameworks. The plugins are particularly suited to existing Oracle
Enterprise Manager customers who need to monitor/alert on new technology but lack
the knowledge or experience to do so easily.

AIDEV has been leveraging the Oracle Enterprise Manager Extensibility
Development Kit (EDK) to develop custom plugins since Oracle Enterprise Manager
10g.

By using the EDK’s powerful plugin development features, AIDEV can deliver
enterprise-grade plugins that provide customers with the functionality they require.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
5

Overview

This document details each of the main stages of plugin development using the
Oracle Enterprise Manager 13c Extensibility Development Kit (EDK).

Each stage in the process is explained, based on experience gained by plugin
developer AIDEV.

The aim of this document is to explain how plugin developers can leverage the EDK
to create powerful enterprise-grade custom plugins which seamlessly integrate into
Oracle Enterprise Manager 13c.

Assumptions

This document assumes the reader has basic experience of Oracle Enterprise
Manager 13c and the Extensibility Development Kit, including the components of a
plugin.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
6

The Main Stages of Plugin Development

Oracle Enterprise Manager 13c plugin development is a multi-stage process.

At AIDEV, we perform each of the following distinct stages when developing a new
plugin:

1. Identify plugin requirements

2. Source test environments

3. Understand the technology

4. Profile the required targets

5. Identify and define target metrics

6. Develop the backend code

7. Stage the plugin

8. Validate and compile the plugin

9. Import the plugin

10. Deploy to the OMS

11. Deploy to the agent

12. Add a custom target

13. Custom UI development

Each stage identified above is described in detail within the following sections of this
document.

By following this process, plugin developers can easily create enterprise-grade
plugins for Oracle Enterprise Manager 13c.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
7

Stage 1 – Identify plugin requirements

The first stage in the development process is to identify exact requirements for the
new plugin.

For example, these could be a combination of any of the following:

§ To monitor and alert on core component status across an environment

§ To manage component configuration standards across a site

§ To provide single-screen visibility of all components within a cluster

§ To allow remote component control (stop/start) from within Oracle Enterprise

Manager 13c

§ To provide a reporting capability for application availability

If we are developing a custom plugin for a customer, this stage typically involves the
plugin developer having meetings with the customer to identify and document all of
the main plugin requirements.

The developer may also need to liaise further with technical experts or support staff
to gain an understanding of how the target technology works.

Investigation should be performed into how monitoring can be achieved, taking into
consideration any metric retrieval interfaces that are published by the technology.

Once the main requirements for the plugin have been identified, the development
process can move on to the next stage – sourcing a suitable test environment.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
8

Stage 2 – Source test environments

Obviously this is a very important stage – plugin developers clearly require a test
build, sandpit, VM, physical or similar environment to connect to and develop the
plugin against.

They will also need to deploy and test the plugin against each Oracle Enterprise
Manager supported by the plugin.

Target Environment

It is essential that all major releases and configurations of the custom target(s) are
catered for and can be tested against.

This is particularly important for plugins that intend to support multiple target versions.
Our mongoDB plugin supports multiple versions of mongoDB (version 2.3 to the
current release 4.x) hence requires test environments for each major mongoDB
release.

We typically use lightweight virtual machines for test environments as they help
facilitate speed of delivery whilst maintaining flexibility in environment build options.

Oracle Enterprise Manager Environment

Plugin development must not be performed against a Production Oracle Enterprise
Manager environment. Plugins will have to be deployed multiple times as part of the
testing process and failed deployments may require a backout/restoration of the
whole Enterprise Manager environment.

It is also essential that all major versions of Oracle Enterprise Manager supported by
the plugin are tested against. The EDK version used to create the plugin needs to
support all Enterprise Manager versions being tested against. For example, the
developer may choose to develop the plugin using EDK v13.3 and certify it against
Enterprise Manager 13.3, 13.4.

We strongly recommend using dedicated Enterprise Manager environments for
development, ideally hosted on virtual machines to facilitate easy backout/restoration.

Once the required test environments have been sourced, the plugin developer
should begin to gain familiarity with the target technology. This is detailed in the next
section ‘Understand the technology’.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
9

Stage 3 – Understand the technology

It is extremely important that the plugin developer has a technical understanding of
the target technology prior to developing the plugin.

Expert level knowledge is not essential. A fundamental understanding of the
technology will however help ensure the plugin is appropriate for purpose.

The developer should assess whether a local or remote Enterprise Manager agent
should be used to monitor the target technology. Remote agents allow for easy
monitoring of multiple targets running across varied hosts and operating systems,
whereas local agents permit the capturing of metrics and running of OS jobs without
the need for remote connectivity.

For example, the following steps were required when developing our mongoDB
plugin:

- Learn the core configuration aspects of the technology.
Example: MongoDB uses 'sharding' - data distribution across multiple
machines. An understanding of mongoDB sharding directly influenced our
decision to maintain a single target type for mongod and mongos type
instances. This allowed the gathering of common metrics for all instance
types whilst providing additional sharding metrics for mongos instances.

- Understand the security model.

Example: Following extensive testing, we were able to identify the
roles/privileges needed to retrieve metric information. This in turn defined the
configuration required within mongoDB to allow Oracle Enterprise Manager
monitoring.

- Investigate how targets can be monitored programmatically.

Example: Various tests were performed against sandpit environments before
we opted to use the mongoDB Java drivers for our development. This
approach provides the greatest portability and flexibility for our code, whilst
permitting remote metric capture and JavaScript based job execution.

If the developer has limited knowledge of the technology, they should aim to learn
the required skills, using online materials and testing against sandpit environments.

They may also choose to engage with specialists to further their understanding of the
technology.

Once the developer has a sufficient level of technical understanding, they should
begin to assess and document the required target(s), as detailed in the next section.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
10

Stage 4 – Profile the required targets

It is essential that a plugin developer understands the target(s) required for a new
plugin. Target properties and relationships need to be identified and defined prior to
commencing plugin development.

Target properties

Target properties can serve the following purposes:

- They identify each attribute of the custom target

- They provide information to the agent-side plugin code to enable connectivity
to the target and perform metric retrieval

- They can permit association between related targets

A custom target will have multiple properties. For our mongoDB plugin, we identified
the following properties for the mongodb_db target type:

Property Name Optional Read Only
servername N N
port N N
jarloc N N
ssl N N
sslstore N N
mongo_id Y N

These properties map directly to the inputs provided when manually adding a
mongoDB target into Enterprise Manager:

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
11

Security credentials

Optionally, security credentials may also be required to allow the backend code to
communicate with the managed component.

Monitoring credentials normally map to target properties, initially supplied when the
target is added.

Our mongoDB plugin uses the following properties to authenticate against a
dedicated monitoring account to retrieve metric data:

Property Name Optional Read Only
Username N N
Password N N

These properties map directly to inputs provided when adding in new mongoDB
targets and result in security credentials of type 'mgoCreds' being created in
Enterprise Manager:

Plugin developers must identify and document the required target
properties/credentials for each target type.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
12

Target relationships

Some plugins may require multiple related target types, whilst other plugins might
contain only one target type.

Our VCS plugin contains the following related target types:

Target Type Relationship
vcs_cluster Top level cluster target – can

contain 1..x vcs_node targets
vcs_node Node level target – can contain

1..x vcs_node_group targets
Member of vcs_cluster

vcs_node_group VCS group target per node – can
contain 1..x vcs_resource targets

vcs_group VCS group target- cluster type
target containing 1..x
vcs_node_group targets
Provided by vcs_cluster target

vcs_resource Bottom level target – maps to
cluster resource in VCS
Member of vcs_node_group target

Target relationships aid the use of core Enterprise Manager features such as
Topology Viewer and problem root cause analysis.

If related target types are required, developers should identify and document all
required target types and relationships during this stage.

Once the developer has identified and documented the required target properties,
security credentials and relationships, this data will input into subsequent stages of
the development process.

At this point, the developer should then move on to the next stage in the process –
metric definition.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
13

Stage 5 – Identify and define target metrics

A custom target type will require various metrics to determine component status,
performance and configuration.

We find that at this stage it helps to identify and document the metrics that will be
implemented, their data types and any meaningful thresholds that can serve as a
basis for alerting.

Metrics can then be added into the required XML files within the plugin stage
directory tree (see Stage 7, ‘Stage the plugin’). Each defined metric will also map to
programmatic logic developed within the backend code (see Stage 6, ‘Develop the
backend code’).

This stage should be performed in conjunction with the next two stages. New metrics
should be identified, corresponding logic developed in the backend code to allow
agent retrieval of the required metric data, and finally metric definition and collection
behavior added to the staged plugin XML files.

Agent Side Metrics

Traditional Enterprise Manager metrics are collected by the management agent, then
uploaded to the OMS. Most metrics within a plugin will be of this type.

The first metric to define, and the only one which is mandatory, is Response.

This metric is required for all non-cluster target types and determines one column,
Status, indicating the current target availability.

For our mongoDB plugin, the Response metric is documented as follows:

Metric Name Col1 Collection

Frequency
Response Status [NUMBER] Every 1 min

The next step a plugin developer should take would be to develop backend code to
retrieve the Response metric (see Stage 6).

XML content for this metric can then be added to the staged target metadata and
collection files(Stage 7).

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
14

For our mongoDB plugin, the metadata XML entry for the Response metric is as
follows:

Once the Response metric has been identified, the backend code developed and the
XML content added, the plugin developer should move on through each additional
metric in turn.

A target type will normally contain many additional metrics – these could be single-
column or multi-column, single-row or multi-row, depending on the underlying data.

In the case of our mongoDB plugin, one example of a multi-column additional metric
is the serverStatus memory metric.

This metric captures two columns – Attribute (the key value) and Value.

Data is collected every 15 minutes by default.

This metric is defined as follows:

Metric Name Col1 Col2 Collection

Frequency
Memory Attribute [STRING]

key
Value [NUMBER] Every 15 min

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
15

The resultant metadata XML to be fed into Stage 7 for this metric is:

Note how the ‘command’ property runs the backend code, mongo.sh, passing in a
parameter ‘memory’ - this returns metric data in the following format:

The corresponding collection XML for this metric is:

Consideration should also be given to using advanced metric columns. These are
based on existing and previous values collected by the agent and are particularly
useful for calculating rate/delta based pseudo values.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
16

We use an advanced metric column within our mongoDB plugin to calculate the delta
value for deletes based on the difference between current and previous
measurements.

This is the XML content within the target metadata file:

Metric alerting thresholds also need to be identified. For our mongoDB plugin, the
replication lag metric should provide the ability to alert when the collected lag is
greater than a given threshold.

This is the resultant collection XML:

Most metrics will only be collected when a target is up, however this is not always the
case (for example, log file content metrics).

The following collection XML example from our VCS plugin illustrates a metric
GroupState that is also collected when the target is down:

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
17

Repository Side Metrics

In addition to standard agent side metrics, repository-side metrics may also be
required.

Repository side metrics capture data from the Oracle Enterprise Manager repository
metric data by running custom SQL. They are particularly useful when multi-target
aggregate data or summary data is required for a metric.

To calculate the total size of all databases within a mongoDB target, our plugin uses
a repository-side metric running the following SQL:

select target_guid, total as TOT from
(
 select target_guid, sum(value) as total
 from mgmt$metric_current where metric_name = 'dbStats'
 and metric_column = 'dataSizeMb'
 group by target_guid
)

This translates into the following metadata XML for Stage 7:

Repository side metrics are rendered alongside agent side metric in an identical
manner:

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
18

Configuration collection

Configuration collection metrics are another consideration - data collected from these
metrics can be viewed in Oracle Enterprise Manager under the ‘Configuration’ menu
option.

If a custom target type exposes configuration data, this can be defined as a
configuration collection and collected regularly.

Configuration collection metrics need to be marked CONFIG=TRUE in the metadata
xml and require a custom table to be defined within the plugin to hold the data.

In the case of our mongoDB plugin, we capture build configuration for each target on
a daily basis.

Two columns, ATTRIB and SETTING are captured by the backend code and stored
as configuration data in the Enterprise Manager repository:

Metric Name Col1 Col2 Collection

Frequency
MONGODB_BUILDINFO2 Attribute

[STRING] key
Value [STRING] Every 1 day

The target metadata xml file contains the following entry for this metric:

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
19

A matching entry in the collection xml file enforces daily collection of the metric:

This corresponds to an entry in the snapshotlive xml file, detailing the custom table
and UI labels to use:

When the plugin is imported into Oracle Enterprise Manager, we get a custom table
created for the configuration data:

The table underpins the mongoDB configuration data rendered within Oracle
Enterprise Manager:

Once a metric has been identified and defined, the plugin developer should move on
to the next stage, backend code development.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
20

Stage 6 – Develop the backend code

The next stage in the plugin development process, following metric definition, is to
create the method of communication between the Oracle Enterprise Manager agent
and the custom target – the ‘backend code’.

The primary focus of this stage is to create a communication and metric retrieval
mechanism. This will ensure that the metric data is captured and returned to the
agent in an appropriate format.

Oracle Enterprise Manager can monitor targets in a variety of ways, for example
remote or local, through perl scripts, bash scripts or Java RMI. If the agent can
communicate with the target to capture the required metrics and return the metric
data in a way that Enterprise Manager can understand, the list is practically endless.

At AIDEV, we begin by creating standalone scripts, passing in appropriate values for
expected target properties and evaluating the retrieved output.

As mentioned previously, the Response metric should be targeted first – this
governs target status and needs to return a number, either ‘1’ (up) or ‘0’ (down), to
the agent.

In this case of our mongoDB plugin, the captured metric data is prefixed with
'em_result=' - expected output from the backend code for an 'Up' target is:

em_result=1

As each additional metric is defined, the backend code should be enhanced to
capture the required data.

Multi-column metrics will require a returned payload separated by a delimiter– this is
usually a pipe symbol.

As indicated earlier, for our mongoDB plugin the backend script output for the
memory metric is in the following format:

Appropriate error handling is also required in the backend code to ensure error-free
data is passed to the agent.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
21

Within our mongoDB plugin java source code, we handle connection timeouts in the
following manner, passing '0' back for the response metric if a timeout is encountered:

Each metric should map to logic within the backend code and be defined with a
command property in the staged target metadata XML (see next section).

For example, in the case of our mongoDB plugin, the asserts metric call is:

<Property NAME="command"
SCOPE="GLOBAL">/bin/bash %scriptsDir%/mongo.sh
asserts</Property>

We have found that test harnesses help to exhaustively test each metric being called
by the backend code. They also allow for output comparison when running against
varied configurations and versions.

An example of this is the following script, used to test each mongoDB metric within
our plugin:

Once the backend code has been developed for a specific metric, the developer
should move to the next stage, ‘Stage the plugin’, adding metric definition and
collection XML into the required plugin files.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
22

Stage 7 – Stage the plugin

The next stage in the process is to gather all information and scripts from the
previous stages and bundle them together into a skeleton plugin.

The most straightforward approach to take is to develop metrics individually,
performing stages 5, 6,7 and 8 each time.

Normally at this stage, we don't include any custom UI content – this is added later in
the process.

A prerequisite to performing this stage is to install the Enterprise Manager
Extensibility Development Kit (EDK) and configure the plugin staging directory
structure and XML files.

It should be noted that recent versions of the EDK reflect the move from Adobe Flex
to JET for UI development. For this reason, we recommend using the 13.2 EDK
u170321 or later with patch 25453518 – this maintains plugin support for Enterprise
Manager 13.2 and above whilst permitting a JET based UI.

All examples in this document are based on EDK 13.2 – we use this version for our
mongoDB plugin to ensure compatibility with Enterprise Manager 13.2 and above.

EDK install & staging area creation

The sample plugin code contained within the Enterprise Manager EDK zip file is a
good starting point to begin with when creating the staging area.

The EDK can be obtained from the following menu in Oracle Enterprise Manager:

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
23

Download the EDK from this page and follow the configuration instructions provided.

Create the plugin staging area by copying the location
samples/plugins/HostSample/demo_hostsystem/opar/stage and
amending the content as follows:

plugin.xml

- XML to detail plugin metadata
- edit and amend according to plugin definition

agent/plugin_registry.xml

- XML to detail metadata and files within the plugin
- edit and amend according to plugin definition

agent/metadata/target_type.xml

- the main target XML file detailing target properties and metrics
- add in target metric XML as identified in Stage 5

agent/default_collection/target_type.xml

- metric collection behavior
- add in collection XML as identified in Stage 5

agent/scripts

- location for each backend script developed in Stage 6
- copy each script into here

agent/discovery

- leave this location empty for now as target discovery is beyond the scope of
this example

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
24

oms/metadata/assoc
oms/metadata/derivedAssocs
oms/metadata/discovery
oms/metadata/snapshotlive
oms/metadata/systemStencil
oms/metadata/systemUiIntegration

- leave these locations empty as the features are beyond the scope of this
example

oms/metadata/targetType/target_type.xml

- this is typically identical to the agent equivalent

oms/metadata/default_collection/target_type.xml

- this is typically identical to the agent equivalent

oms/metadata/mpcui/target_type.xml

- this would typically hold the mpcui UI definition, page content and menu
layout prior to implementing a JET UI

- as a starting point, create a minimum content xml file based on the supplied
sample projects

Note: It is extremely important that the plugin developer defines the
AgentCompatibility tag within the staged plugin.xml file.

This ensures that backward compatibility can be achieved between the newly
deployed OMS-side plugin and older agent-side plugin versions.

This is important when upgrading to a newer plugin release.

For our mongoDB plugin version 13.2.0.1.0 file, we define the following:

The above entry ensures that agent-side plugin versions 12.1.0.9.0 and 12.1.0.10.0
can work against the OMS-side 13.2.0.1.0 plugin.

Please refer here for further information on the required XML file content in each of
the required files.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
25

XML content creation

The Oracle Enterprise Manager EDK contains multiple sample projects. At AIDEV we
recommend using these as a starting point for XML file creation and a point of
reference.

Oracle also provides a java-based tool, Plug-in Builder, for generating plugin XML
files. This can be particularly helpful for plugin developers with limited experience of
plugin development.

We normally develop our plugins manually, using previous plugin content as a
starting point. We do however recommend Plug-in Builder for first time plugin
developers to gain familiarity with the process.

Plug-in Builder is outside the scope of this document, however more information can
be found at https://docs.oracle.com/cd/cloud-control-13.3/EMPRF/GUID-6A94EE77-
D7AA-4A30-83AA-B627C41D7264.htm#EMPRF12922.

As a developer creates new plugins, existing code can be reused from previous
builds/plugins.

We recommend adding each metric individually, each time performing a plugin
validation as detailed in the next stage to troubleshoot any issues.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
26

Stage 8 – Validate and compile the plugin

The empdk utility is bundled within the Oracle Enterprise Manager EDK.

It is used to compile an opar file from the plugin source directory structure created in
the previous stage.

The opar file can then be imported into Enterprise Manager and deployed to the
OMS and agent tiers.

Empdk also allows validation of the plugin content, checking for errors and
highlighting areas requiring further attention.

To run empdk validation, the command is:

empdk validate_plugin -stage_dir {stage location} -out_dir
{opar location} -debug {debug log location}/debug.log

Sample output from a successful validation would be:

Stages 7 and 8 should be performed in small increments, adding new metrics, fixing
issues and re-validating the plugin.

Once all metrics have been added and final validation is complete for a plugin, it can
be compiled into an opar file:

empdk create_plugin -stage_dir {stage location} -out_dir {opar
location} -debug {debug log location}/debug.log

Sample output:

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
27

Important: The plugin version defined in the staged plugin.xml and
agent/plugin_registry.xml files must match the version of EDK being used, and in turn
the version of Enterprise Manager.

Any attempt to run empdk against a different version of plugin will result in the
following error:

Once the opar file has been created, it can be imported into Oracle Enterprise
Manager and deployed for further testing.

Stage 9 – Import the plugin

In this stage, the developer will import the plugin opar file created in the previous
section.

At AIDEV, we recommend using a non-Production Enterprise Manager system for
plugin development – failures in plugin deployment can require full OMS or OMR
restoration to resolve.

Virtual machine hosted environments allow for a quick reversal of plugin deployment
hence should be considered for the Oracle Enterprise Manager system.

The plugin opar can be imported into Enterprise Manager in the standard way:

emcli import_update -file={full path to opar file} -omslocal

This imports the plug-in into the Enterprise Manager environment and makes it
visible within the console.

Example:

Once the plugin is imported into Enterprise Manager, it should be deployed to the
OMS and agent tiers.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
28

Stage 10 – Deploy to the OMS

Deploy the plugin to the OMS tier using the standard procedure.

Stage 11 – Deploy to the agent

Deploy the plugin to the management agent using the standard procedure.

At this point, the plugin should be visible within Oracle Enterprise Manager and
showing as being deployed to a management agent:

The plugin developer should now proceed to the next stage, adding custom targets
into Enterprise Manager.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
29

Stage 12 – Add a custom target

Once the plugin has been successfully deployed to the OMS and agent tiers, a
custom target can be added into Enterprise Manager.

The following example illustrates the adding of a custom mongoDB target:

Setup->Add Target-> Add Targets Manually

Choose ‘Add Non-Host Targets Using Declarative Process’:

Click the spyglass:

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
30

Select the management agent host to add the target to, then click Select

Select the custom target type in the target type box:

Click Add to view the Target Properties screen

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
31

The target properties screen will be shown:

Complete the required properties and click OK

The target will be added into Enterprise Manager:

The target should now be visible and ‘Up’ in Enterprise Manager:

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
32

On the target home page, the ‘All Metrics’ link will show the metrics defined for the
target type. The following example illustrates the mongoDB memory metric defined
earlier in this document:

After a period of time, the user can examine historical metric information for the
target. The following example shows historical data for the mongoDB memory metric:

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
33

Metric collection behavior can be amended through the 'Metric and Collection
Settings' link.

The following example illustrates the mongoDB plugin memory metric default
collection settings:

Custom key-based alerting thresholds can also be added. In this example, we have
added Warning and Critical thresholds for the value obtained for the virtual key:

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
34

Once a target had been added, the plugin developer should test each metric from
within Oracle Enterprise Manager.

Data collected and rendered within Enterprise Manager should be verified as being
appropriate and correct.

The Metric and Collection Errors menu option can be used to identify issues:

Any issues or metric collection errors should be investigated, resolved, re-tested and
the plugin source updated accordingly.

This action may involve additional tracing on the Enterprise Manager agent or by
adding debug scripting into the backend code.

As the plugin code evolves, developers can use the ‘emctl register oms
metadata’ command to update Oracle Enterprise Manager with the changes made
to core XML files.

Alternatively, if using a VM based development environment, Oracle Enterprise
Manager can be quickly restored. Newly compiled opar files can then be imported,
redeployed and subsequently tested again.

Following the successful undertaking of this stage, the plugin is nearing completion.

Developers should now progress to the next stage, custom UI development.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
35

Stage 13 – Custom UI development

Once the plugin is imported into Enterprise Manager, and a target has been added,
the plugin developer can create the custom plugin UI.

This is the final stage in the development process.

The plugin UI should be created using Oracle’s JavaScript Extension Toolkit (JET)
through the Apache Netbeans IDE.

Oracle has provided sample Netbeans projects within the EDK sample project code.
We recommend using these as a starting point for UI development.

Apache Netbeans allows the plugin developer to create a JavaScript library that can
be added into the plugin staging area and included within the final compiled opar file.

Once imported to the OMS, this library is used by Enterprise Manager to render the
UI pages for target types contained within the custom plugin.

The Netbeans project contains code for each custom UI page – a JavaScript
controller and a corresponding HTML based view page.

All controller code is contained within the js branch of the Netbeans project:

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
36

All screen content is defined in HTML files, within the View branch of the project:

Netbeans allows the plugin developer to iteratively code and test in a standalone IDE,
independent of Oracle Enterprise Manager.

Plugin interfaces can be run in a standard web browser locally, allowing quick
development and testing of each UI page.

We typically develop UI screens using Netbeans and the Google Chrome browser.

Chrome also provides a Netbeans connector – this allows for deeper tracing and
debugging of the UI from within Netbeans.

The logon screen within the Netbeans test harness allows for custom UI code to be
run against a specific target in Enterprise Manager:

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
37

The following example is of the mongoDB target home page for the target added
earlier in this document:

Metric information can be retrieved from Enterprise Manager and rendered
graphically within the UI pages.

This screen illustrates the values obtained for the memory metric defined earlier in
this document (all data on this screen is historical and retrieved directly from the
Oracle Management Repository):

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
38

Screens can also capture and render real-time metric data, obtained directly from the
custom target by the Enterprise Manager agent.

This example shows currently connected clients, captured real-time from mongoDB:

Traditional legacy Flex-type objects can be used within the UI pages – this is enabled
through the inclusion of mpcui libraries within the supplied Netbeans project code.

Flex-type objects enable plugin developers with Flex experience to move to JET
based coding with relative ease.

They also allow legacy Flex based plugins to be migrated to JET relatively quickly.

Oracle has documented the similarities between Flex and JET objects here.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
39

For example, an availability data service in JET:

Compared to the Flex equivalent:

<mp:AvailDataService id="ads" targetName="{appModel.target.name}"
 targetType="{appModel.target.type}"/>

We recommend using Oracle’s documentation as a starting point for UI development
in JET.

The sample plugin project code contained in the EDK is also an excellent reference
point for developers.

For the purpose of UI development testing, newly compiled JavaScript libraries can
be imported directly into Oracle Enterprise Manager from a stage location:

emctl register oms metadata -service mpcui -file
/stage/mpcui/mongodb_database.xml -pluginId aidev.mongo.xdbs

This allows the developer to test UI changes from within Oracle Enterprise Manager.

Once UI development is complete, the resultant JavaScript libraries can be placed
within the plugin code staging area.

The finished plugin opar file can then be compiled and imported into a clean
Enterprise Manager environment for final testing.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
40

Additional Considerations

Outside the scope of this document, some other areas of consideration when
developing a plugin are:

Custom Reports

Developers can include BI Publisher and Information Publisher reports in their plugin
code. Reports can be easily developed within Enterprise Manager then copied to the
plugin staging area before opar recompilation.

Custom Jobs

Job definitions can be contained within a plugin’s content.

Our mongoDB plugin facilitates component control as well as providing the ability to
remotely execute JavaScript code against targets. These operations can be run
seamlessly within the Oracle Enterprise Manager jobs framework.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
41

Target Discovery

Plugins can use guided target discovery. Our VCS plugin allows for target discovery,
initiating custom code to identify VCS components on a host, passing the relevant
target and association information back to Enterprise Manager.

More information on the above features can be found within the Extensibility
Programmer’s Guide.

Oracle Enterprise Manager Mobile Application

Oracle Enterprise Manager 13.4 introduces a new mobile application – this allows
the EM administrator to seamlessly interact with the EM monitoring and incident
management framework through an Android/Apple app.

Plugins do not require any additional functionality to leverage this capability –
integration is provided out of the box, allowing remote monitoring and incident
management of custom targets through a mobile device.

											ORACLE ENTERPRISE MANAGER 13C PLUGIN DEVELOPMENT PRACTICAL TIPS FROM AN EXPERIENCED PLUGIN DEVELOPER

	
42

Conclusion

At AIDEV we have found that the Oracle Enterprise Manager 13c EDK enables rapid
and powerful development of custom plugins.

By following the stages outlined in this document, plugin developers can create
enterprise-grade plugins to meet custom requirements.

Plugins created in this manner allow for a seamless integration into Oracle Enterprise
Manager 13c, leveraging full use of core features such as monitoring, alerting,
reporting and configuration management.

Apache Netbeans allows for iterative development of feature-rich JET based screens,
rendering core target metric and configuration information to the end-user.

The inclusion of mpcui libraries within the EDK sample projects reduces the learning
curve experienced by Flex developers and allows for a smooth migration of existing
Flex-based plugins to a JET/js/HTML format.

Further Information

Aidev
http://www.aidev.uk

Oracle Enterprise Manager 13c
https://www.oracle.com/technetwork/oem/enterprise-manager/overview/index.html

Oracle Enterprise Manager Extensibility Exchange
https://apex.oracle.com/pls/apex/oracle_enterprise_manager/r/em-extensibility-
exchange-v3

Oracle Enterprise Manager 13c Extensibility Documentation
https://docs.oracle.com/cd/cloud-control-13.3/nav/extensibility.htm

AIDEV/Wardrop Consulting Ltd is an Oracle Partner based in the UK, specializing in Oracle
Enterprise Manager.

We offer Oracle Enterprise Manager consultancy services, including custom plugin
development for application vendors.

Please contact info@aidev.uk for more information.

